File size: 7,639 Bytes
e6d52ea
 
 
 
 
0c777e7
 
 
 
 
 
 
 
e5c9659
0c777e7
 
 
 
 
 
 
 
93a997b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c777e7
 
 
 
f18eeb7
0c777e7
 
0db34bd
0c777e7
 
 
eda3bd5
0c777e7
 
 
 
 
 
 
 
 
 
0db34bd
0c777e7
eda3bd5
0c777e7
 
 
 
 
 
 
 
 
0db34bd
0c777e7
e6d52ea
 
537b576
 
 
 
 
0c777e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda3bd5
a46ea20
 
 
eda3bd5
 
 
a46ea20
eda3bd5
 
 
a46ea20
0c777e7
 
 
e6d52ea
 
a46ea20
f18eeb7
e6d52ea
0c777e7
f18eeb7
 
0c777e7
f18eeb7
 
0c777e7
f18eeb7
 
 
 
710fb48
0c777e7
 
 
 
 
 
 
 
 
 
 
115f014
710fb48
0c777e7
0db34bd
3691805
115f014
710fb48
0c777e7
710fb48
 
 
0c777e7
e6d52ea
 
 
 
115f014
e6d52ea
 
 
 
 
0c777e7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
    creator: Lewis Kamau Kimaru
    Function: chat with pdf documents in different languages
    
"""
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.llms import HuggingFaceHub

from typing import Union

from dotenv import load_dotenv
from PyPDF2 import PdfReader
import streamlit as st
import requests
import json
import os




# Authentication
import streamlit_authenticator as stauth

import yaml
from yaml.loader import SafeLoader

with open('config.yaml') as file:
    config = yaml.load(file, Loader=SafeLoader)
authenticator = stauth.Authenticate(
    config['credentials'],
    config['cookie']['name'],
    config['cookie']['key'],
    config['cookie']['expiry_days'],
    config['preauthorized']
)

name, authentication_status, username = authenticator.login('Login', 'main')

if authentication_status:
    authenticator.logout('Logout', 'main', key='unique_key')
    st.write(f'Welcome *{name}*')
    st.title('Some content')
elif authentication_status is False:
    st.error('Username/password is incorrect')
elif authentication_status is None:
    st.warning('Please enter your username and password')


if authentication_status:
    try:
        if authenticator.reset_password(username, 'Reset password'):
            st.success('Password modified successfully')
    except Exception as e:
        st.error(e)

try:
    if authenticator.register_user('Register user', preauthorization=False):
        st.success('User registered successfully')
except Exception as e:
    st.error(e)


try:
    username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
    if username_forgot_pw:
        st.success('New password sent securely')
        # Random password to be transferred to the user securely
    else:
        st.error('Username not found')
except Exception as e:
    st.error(e)


try:
    username_forgot_username, email_forgot_username = authenticator.forgot_username('Forgot username')
    if username_forgot_username:
        st.success('Username sent securely')
        # Username to be transferred to the user securely
    else:
        st.error('Email not found')
except Exception as e:
    st.error(e)


if authentication_status:
    try:
        if authenticator.update_user_details(username, 'Update user details'):
            st.success('Entries updated successfully')
    except Exception as e:
        st.error(e)

with open('config.yaml', 'w') as file:
    yaml.dump(config, file, default_flow_style=False)



# set this key as an environment variable
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']

# Page configuration
st.set_page_config(page_title="SemaNaPDF", page_icon="📚",)

# Sema Translator
Public_Url = 'https://lewiskimaru-helloworld.hf.space' #endpoint

def translate(userinput, target_lang, source_lang=None):
    if source_lang:
       url = f"{Public_Url}/translate_enter/"
       data = {
           "userinput": userinput,
           "source_lang": source_lang,
           "target_lang": target_lang,
        }
       response = requests.post(url, json=data)
       result = response.json()
       print(type(result))
       source_lange = source_lang
       translation = result['translated_text']
       
    else:
      url = f"{Public_Url}/translate_detect/"
      data = {
        "userinput": userinput,
        "target_lang": target_lang,
      }

      response = requests.post(url, json=data)
      result = response.json()
      source_lange = result['source_language']
      translation = result['translated_text']
    return source_lange, translation

def get_pdf_text(pdf : Union[str, bytes, bytearray]) -> str:
    reader = PdfReader(pdf)
    pdf_text = ''
    for page in (reader.pages):
        text = page.extract_text()
        if text:
            pdf_text += text
    return text


def get_text_chunks(text:str) ->list:
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


def get_vectorstore(text_chunks : list) -> FAISS:
    model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    encode_kwargs = {
        "normalize_embeddings": True
    }  # set True to compute cosine similarity
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore


def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain:
    llm = HuggingFaceHub(
        repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
        #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
        model_kwargs={"temperature": 0.5, "max_length": 1048},
    )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm, retriever=vectorstore.as_retriever(), memory=memory
    )
    return conversation_chain


st.markdown (""" 
  <style> div.stSpinner > div {
    text-align:center; 
    text-align:center;
    align-items: center;
    justify-content: center;
  } 
  </style>""", unsafe_allow_html=True)



def main():
    st.title("SemaNaPDF📚")
    # upload file
    pdf = st.file_uploader("Upload a PDF Document", type="pdf")
    if pdf is not None:
        with st.spinner(""):
            # get pdf text
            raw_text = get_pdf_text(pdf)

            # get the text chunks
            text_chunks = get_text_chunks(raw_text)

            # create vector store
            vectorstore = get_vectorstore(text_chunks)

            # create conversation chain
            st.session_state.conversation = get_conversation_chain(vectorstore)
            st.info("done")
            
    #user_question = st.text_input("chat with your pdf ...")
    # show user input
    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if user_question := st.chat_input("Ask your document anything ......?"):
        with st.chat_message("user"):
            st.markdown(user_question)
            
        user_langd, Queryd = translate(user_question, 'eng_Latn')
        st.session_state.messages.append({"role": "user", "content": user_question})
        response = st.session_state.conversation({"question": Queryd}) #Queryd
        st.session_state.chat_history = response["chat_history"]
        
        output = translate(response['answer'], user_langd, 'eng_Latn')[1] # translated response
        with st.chat_message("assistant"):
            #st.markdown(response['answer'])
            st.markdown(output)
            st.session_state.messages.append({"role": "assistant", "content": response['answer']})

    # Signature
    st.markdown(
        """
        <div style="position: fixed; bottom: 0; right: 0; padding: 10px;">
            <a href="https://kamaukimaru.vercel.app" target="_blank" style="font-size: 12px; color: #269129; text-decoration: none;">©2023 Lewis Kimaru. All rights reserved.</a>
        </div>
        """,
        unsafe_allow_html=True
    )


if __name__ == '__main__':
    main()