""" Inference import requests import json def send_request_to_flask(prompt, history, temperature=0.7, max_new_tokens=100, top_p=0.9, repetition_penalty=1.2): # URL of the Flask endpoint url = "https://jikoni-llamasms.hf.space/generate" # Adjust the URL if needed # Create the payload payload = { "prompt": prompt, "history": history, "temperature": temperature, "max_new_tokens": max_new_tokens, "top_p": top_p, "repetition_penalty": repetition_penalty } try: # Send the POST request response = requests.post(url, json=payload) # Check if the request was successful if response.status_code == 200: result = response.json() return result["response"] else: print("Failed to get response from Flask app.") print("Status Code:", response.status_code) print("Response Text:", response.text) return None except requests.RequestException as e: print("An error occurred:", e) return None if __name__ == "__main__": history = [] # Initialize an empty history list while True: # Prompt the user for input prompt = input("You: ") if prompt.lower() in ['exit', 'quit', 'stop']: print("Exiting the chat.") break # Send request and get response response_text = send_request_to_flask(prompt, history) if response_text: print("Response from Flask app:") print(response_text) # Update history history.append((prompt, response_text)) else: print("No response received.") """ from flask import Flask, request, jsonify from huggingface_hub import InferenceClient # Initialize Flask app app = Flask(__name__) print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output # Initialize InferenceClient client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1") def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): # Print user prompt print(f"\nUser: {prompt}\n") temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, seed=42, ) formatted_prompt = format_prompt(prompt, history) # Get response from Mistral model response = client.text_generation( formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False ) output = "" for token in response: output += token.token.text # Print AI response print(f"\nSema AI: {output}\n") return output @app.route("/generate", methods=["POST"]) def generate_text(): data = request.json prompt = data.get("prompt", "") history = data.get("history", []) temperature = data.get("temperature", 0.9) max_new_tokens = data.get("max_new_tokens", 256) top_p = data.get("top_p", 0.95) repetition_penalty = data.get("repetition_penalty", 1.0) try: response_text = generate( prompt, history, temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty ) return jsonify({"response": response_text}) except Exception as e: # Print error print(f"Error: {str(e)}") return jsonify({"error": str(e)}), 500 if __name__ == "__main__": app.run(debug=True, port=5000)