Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -12,19 +12,27 @@ app = Flask(__name__)
|
|
12 |
|
13 |
print("Hello welcome to Sema AI", flush=True) # Flush to ensure immediate output
|
14 |
|
|
|
|
|
|
|
|
|
15 |
# Get Hugging Face credentials from environment variables
|
16 |
email = os.getenv('HF_EMAIL')
|
17 |
password = os.getenv('HF_PASS')
|
18 |
GEMMA_TOKEN = os.getenv("GEMMA_TOKEN")
|
19 |
#print(f"email is {email} and password is {password}", flush=True)
|
20 |
|
|
|
|
|
|
|
|
|
21 |
MAX_MAX_NEW_TOKENS = 2048
|
22 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
23 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
24 |
|
|
|
25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
-
model_id = "google/gemma-2-2b-it"
|
28 |
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
@@ -33,11 +41,70 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
33 |
)
|
34 |
model.config.sliding_window = 4096
|
35 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
@app.route("/")
|
38 |
-
def hello():
|
39 |
-
return "hello 🤗, Welcome to Sema AI Chat Service."
|
40 |
|
|
|
|
|
41 |
# Flask route to handle incoming chat requests
|
42 |
@app.route('/chat', methods=['POST'])
|
43 |
def chat():
|
@@ -81,3 +148,4 @@ def generate_response(prompt_input, email, passwd):
|
|
81 |
|
82 |
if __name__ == '__main__':
|
83 |
app.run(debug=True)
|
|
|
|
12 |
|
13 |
print("Hello welcome to Sema AI", flush=True) # Flush to ensure immediate output
|
14 |
|
15 |
+
@app.route("/")
|
16 |
+
def hello():
|
17 |
+
return "hello 🤗, Welcome to Sema AI Chat Service."
|
18 |
+
|
19 |
# Get Hugging Face credentials from environment variables
|
20 |
email = os.getenv('HF_EMAIL')
|
21 |
password = os.getenv('HF_PASS')
|
22 |
GEMMA_TOKEN = os.getenv("GEMMA_TOKEN")
|
23 |
#print(f"email is {email} and password is {password}", flush=True)
|
24 |
|
25 |
+
if not (email, password,GEMMA_TOKEN):
|
26 |
+
print("no dependacies", flush=True)
|
27 |
+
|
28 |
+
"""
|
29 |
MAX_MAX_NEW_TOKENS = 2048
|
30 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
31 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
32 |
|
33 |
+
model_id = "google/gemma-2-2b-it"
|
34 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
35 |
|
|
|
36 |
tokenizer = GemmaTokenizerFast.from_pretrained(model_id)
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
model_id,
|
|
|
41 |
)
|
42 |
model.config.sliding_window = 4096
|
43 |
model.eval()
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model, token=GEMMA_TOKEN, device=device)
|
48 |
+
|
49 |
+
quantization_config = GPTQConfig(
|
50 |
+
bits=4,
|
51 |
+
group_size=128,
|
52 |
+
dataset="c4", # the original datasets used in GPTQ paper [‘wikitext2’,‘c4’,‘c4-new’,‘ptb’,‘ptb-new’]
|
53 |
+
desc_act=False,
|
54 |
+
tokenizer=tokenizer,
|
55 |
+
batch_size=1,
|
56 |
+
)
|
57 |
+
quantized=False
|
58 |
+
if quantized:
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path="google/gemma-2-2b-it",
|
60 |
+
token=GEMMA_TOKEN,
|
61 |
+
quantization_config=quantization_config,
|
62 |
+
device_map=device
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path="google/gemma-2-2b-it",
|
66 |
+
token=GEMMA_TOKEN,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
device_map=device
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
app_pipeline = pipeline(
|
73 |
+
"text-generation",
|
74 |
+
model=model,
|
75 |
+
tokenizer=tokenizer
|
76 |
+
)
|
77 |
+
|
78 |
+
@app.route("/generate_text", methods=["POST"])
|
79 |
+
def generate_Text():
|
80 |
+
data = request.json
|
81 |
+
prompt = data.get("prompt", "")
|
82 |
+
max_new_tokens = data.get("max_new_tokens", 1000)
|
83 |
+
do_sample = data.get("do_sample", True)
|
84 |
+
temperature = data.get("temperature", 0.1)
|
85 |
+
top_k = data.get("top_k", 50)
|
86 |
+
top_p = data.get("top_p", 0.95)
|
87 |
+
|
88 |
+
tokenized_prompt = app_pipeline.tokenizer.apply_chat_template(
|
89 |
+
prompt, tokenize=False, add_generation_prompt=True)
|
90 |
+
outputs = app_pipeline(
|
91 |
+
tokenized_prompt,
|
92 |
+
max_new_tokens=max_new_tokens,
|
93 |
+
do_sample=do_sample,
|
94 |
+
temperature=temperature,
|
95 |
+
top_k=top_k,
|
96 |
+
top_p=top_p
|
97 |
+
)
|
98 |
+
|
99 |
+
return jsonify({"response": outputs[0]["generated_text"][len(tokenized_prompt):]})
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
app.run(debug=False, port=8888)
|
104 |
|
|
|
|
|
|
|
105 |
|
106 |
+
|
107 |
+
"""
|
108 |
# Flask route to handle incoming chat requests
|
109 |
@app.route('/chat', methods=['POST'])
|
110 |
def chat():
|
|
|
148 |
|
149 |
if __name__ == '__main__':
|
150 |
app.run(debug=True)
|
151 |
+
"""
|