Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -4,6 +4,8 @@ from huggingface_hub import InferenceClient
|
|
4 |
# Initialize Flask app
|
5 |
app = Flask(__name__)
|
6 |
|
|
|
|
|
7 |
# Initialize InferenceClient
|
8 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
9 |
|
@@ -15,7 +17,9 @@ def format_prompt(message, history):
|
|
15 |
prompt += f"[INST] {message} [/INST]"
|
16 |
return prompt
|
17 |
|
18 |
-
def
|
|
|
|
|
19 |
temperature = float(temperature)
|
20 |
if temperature < 1e-2:
|
21 |
temperature = 1e-2
|
@@ -32,28 +36,26 @@ def generate_stream(prompt, history, temperature=0.9, max_new_tokens=256, top_p=
|
|
32 |
|
33 |
formatted_prompt = format_prompt(prompt, history)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
43 |
|
44 |
-
def generate():
|
45 |
output = ""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
output += token.token.text
|
50 |
-
yield output # Yield intermediate response
|
51 |
-
else:
|
52 |
-
print(f"Unexpected token structure: {token}")
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Error while processing streaming response: {str(e)}")
|
55 |
|
56 |
-
|
|
|
|
|
|
|
|
|
57 |
|
58 |
@app.route("/generate", methods=["POST"])
|
59 |
def generate_text():
|
@@ -66,7 +68,7 @@ def generate_text():
|
|
66 |
repetition_penalty = data.get("repetition_penalty", 1.0)
|
67 |
|
68 |
try:
|
69 |
-
return Response(stream_with_context(
|
70 |
prompt,
|
71 |
history,
|
72 |
temperature=temperature,
|
|
|
4 |
# Initialize Flask app
|
5 |
app = Flask(__name__)
|
6 |
|
7 |
+
print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output
|
8 |
+
|
9 |
# Initialize InferenceClient
|
10 |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
|
11 |
|
|
|
17 |
prompt += f"[INST] {message} [/INST]"
|
18 |
return prompt
|
19 |
|
20 |
+
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
|
21 |
+
print(f"\nUser: {prompt}\n")
|
22 |
+
|
23 |
temperature = float(temperature)
|
24 |
if temperature < 1e-2:
|
25 |
temperature = 1e-2
|
|
|
36 |
|
37 |
formatted_prompt = format_prompt(prompt, history)
|
38 |
|
39 |
+
try:
|
40 |
+
# Get response from Mistral model
|
41 |
+
response = client.text_generation(
|
42 |
+
formatted_prompt,
|
43 |
+
**generate_kwargs,
|
44 |
+
stream=True,
|
45 |
+
details=True,
|
46 |
+
return_full_text=False
|
47 |
+
)
|
48 |
|
|
|
49 |
output = ""
|
50 |
+
for token in response:
|
51 |
+
output += token.token.text
|
52 |
+
yield token.token.text # Yield each token for streaming
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
+
# Print AI response
|
55 |
+
print(f"\nSema AI: {output}\n")
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Exception during generation: {str(e)}")
|
58 |
+
yield "Error occurred"
|
59 |
|
60 |
@app.route("/generate", methods=["POST"])
|
61 |
def generate_text():
|
|
|
68 |
repetition_penalty = data.get("repetition_penalty", 1.0)
|
69 |
|
70 |
try:
|
71 |
+
return Response(stream_with_context(generate(
|
72 |
prompt,
|
73 |
history,
|
74 |
temperature=temperature,
|