llamaSMS / chatapi-v1.py
Tri4's picture
Rename main.py to chatapi-v1.py
6dcddee verified
"""
Inference
import requests
import json
def send_request_to_flask(prompt, history, temperature=0.7, max_new_tokens=100, top_p=0.9, repetition_penalty=1.2):
# URL of the Flask endpoint
url = "https://jikoni-llamasms.hf.space/generate" # Adjust the URL if needed
# Create the payload
payload = {
"prompt": prompt,
"history": history,
"temperature": temperature,
"max_new_tokens": max_new_tokens,
"top_p": top_p,
"repetition_penalty": repetition_penalty
}
try:
# Send the POST request
response = requests.post(url, json=payload)
# Check if the request was successful
if response.status_code == 200:
result = response.json()
return result["response"]
else:
print("Failed to get response from Flask app.")
print("Status Code:", response.status_code)
print("Response Text:", response.text)
return None
except requests.RequestException as e:
print("An error occurred:", e)
return None
if __name__ == "__main__":
history = [] # Initialize an empty history list
while True:
# Prompt the user for input
prompt = input("You: ")
if prompt.lower() in ['exit', 'quit', 'stop']:
print("Exiting the chat.")
break
# Send request and get response
response_text = send_request_to_flask(prompt, history)
if response_text:
print("Response from Flask app:")
print(response_text)
# Update history
history.append((prompt, response_text))
else:
print("No response received.")
"""
from flask import Flask, request, jsonify
from huggingface_hub import InferenceClient
# Initialize Flask app
app = Flask(__name__)
print("\nHello welcome to Sema AI\n", flush=True) # Flush to ensure immediate output
# Initialize InferenceClient
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
# Print user prompt
print(f"\nUser: {prompt}\n")
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
# Get response from Mistral model
response = client.text_generation(
formatted_prompt,
**generate_kwargs,
stream=True,
details=True,
return_full_text=False
)
output = ""
for token in response:
output += token.token.text
# Print AI response
print(f"\nSema AI: {output}\n")
return output
@app.route("/generate", methods=["POST"])
def generate_text():
data = request.json
prompt = data.get("prompt", "")
history = data.get("history", [])
temperature = data.get("temperature", 0.9)
max_new_tokens = data.get("max_new_tokens", 256)
top_p = data.get("top_p", 0.95)
repetition_penalty = data.get("repetition_penalty", 1.0)
try:
response_text = generate(
prompt,
history,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty
)
return jsonify({"response": response_text})
except Exception as e:
# Print error
print(f"Error: {str(e)}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
app.run(debug=True, port=5000)