Spaces:
Running
Running
jhj0517
commited on
Commit
·
6df697d
1
Parent(s):
60def5b
Add `add_filter_to_preview()`
Browse files- modules/sam_inference.py +115 -36
modules/sam_inference.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 2 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
| 3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
|
|
|
| 4 |
from typing import Dict, List, Optional
|
| 5 |
import torch
|
| 6 |
import os
|
|
@@ -13,11 +14,13 @@ from modules.model_downloader import (
|
|
| 13 |
download_sam_model_url
|
| 14 |
)
|
| 15 |
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR
|
| 16 |
-
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE
|
| 17 |
from modules.mask_utils import (
|
| 18 |
save_psd_with_masks,
|
| 19 |
create_mask_combined_images,
|
| 20 |
-
create_mask_gallery
|
|
|
|
|
|
|
| 21 |
)
|
| 22 |
from modules.logger_util import get_logger
|
| 23 |
|
|
@@ -37,7 +40,7 @@ class SamInference:
|
|
| 37 |
):
|
| 38 |
self.model = None
|
| 39 |
self.available_models = list(AVAILABLE_MODELS.keys())
|
| 40 |
-
self.
|
| 41 |
self.model_dir = model_dir
|
| 42 |
self.output_dir = output_dir
|
| 43 |
self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
|
|
@@ -48,14 +51,18 @@ class SamInference:
|
|
| 48 |
self.video_inference_state = None
|
| 49 |
|
| 50 |
def load_model(self,
|
|
|
|
| 51 |
load_video_predictor: bool = False):
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
| 54 |
model_path = os.path.join(self.model_dir, filename)
|
| 55 |
|
| 56 |
-
if not is_sam_exist(
|
| 57 |
-
logger.info(f"No SAM2 model found, downloading {
|
| 58 |
-
download_sam_model_url(
|
| 59 |
logger.info(f"Applying configs to model..")
|
| 60 |
|
| 61 |
if load_video_predictor:
|
|
@@ -81,22 +88,26 @@ class SamInference:
|
|
| 81 |
raise f"Error while loading SAM2 model!: {e}"
|
| 82 |
|
| 83 |
def init_video_inference_state(self,
|
|
|
|
| 84 |
vid_input: str):
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
|
| 88 |
if self.video_inference_state is not None:
|
| 89 |
self.video_predictor.reset_state(self.video_inference_state)
|
|
|
|
| 90 |
|
| 91 |
-
self.video_predictor.init_state(video_path=vid_input)
|
| 92 |
|
| 93 |
def generate_mask(self,
|
| 94 |
image: np.ndarray,
|
| 95 |
model_type: str,
|
| 96 |
**params):
|
| 97 |
-
if self.model is None or self.
|
| 98 |
-
self.
|
| 99 |
-
self.load_model()
|
| 100 |
self.mask_generator = SAM2AutomaticMaskGenerator(
|
| 101 |
model=self.model,
|
| 102 |
**params
|
|
@@ -115,9 +126,9 @@ class SamInference:
|
|
| 115 |
point_coords: Optional[np.ndarray] = None,
|
| 116 |
point_labels: Optional[np.ndarray] = None,
|
| 117 |
**params):
|
| 118 |
-
if self.model is None or self.
|
| 119 |
-
self.
|
| 120 |
-
self.load_model()
|
| 121 |
self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
|
| 122 |
self.image_predictor.set_image(image)
|
| 123 |
|
|
@@ -137,34 +148,78 @@ class SamInference:
|
|
| 137 |
frame_idx: int,
|
| 138 |
obj_id: int,
|
| 139 |
inference_state: Dict,
|
| 140 |
-
points: np.ndarray,
|
| 141 |
-
labels: np.ndarray
|
| 142 |
-
|
|
|
|
| 143 |
logger.exception("Error while predicting frame from video, load video predictor first")
|
| 144 |
raise f"Error while predicting frame from video"
|
| 145 |
|
| 146 |
try:
|
| 147 |
-
|
| 148 |
inference_state=inference_state,
|
| 149 |
frame_idx=frame_idx,
|
| 150 |
obj_id=obj_id,
|
| 151 |
points=points,
|
| 152 |
labels=labels,
|
|
|
|
| 153 |
)
|
| 154 |
except Exception as e:
|
| 155 |
logger.exception("Error while predicting frame with prompt")
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
-
return
|
| 159 |
|
| 160 |
def predict_video(self,
|
| 161 |
video_input):
|
| 162 |
pass
|
| 163 |
|
| 164 |
def add_filter_to_preview(self,
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
):
|
| 167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
def divide_layer(self,
|
| 170 |
image_input: np.ndarray,
|
|
@@ -207,21 +262,14 @@ class SamInference:
|
|
| 207 |
if len(prompt) == 0:
|
| 208 |
return [image], []
|
| 209 |
|
| 210 |
-
point_labels, point_coords, box =
|
| 211 |
-
|
| 212 |
-
for x1, y1, left_click_indicator, x2, y2, point_indicator in prompt:
|
| 213 |
-
if point_indicator == 4.0:
|
| 214 |
-
point_labels.append(left_click_indicator)
|
| 215 |
-
point_coords.append([x1, y1])
|
| 216 |
-
else:
|
| 217 |
-
box.append([x1, y1, x2, y2])
|
| 218 |
|
| 219 |
predicted_masks, scores, logits = self.predict_image(
|
| 220 |
image=image,
|
| 221 |
model_type=model_type,
|
| 222 |
-
box=
|
| 223 |
-
point_coords=
|
| 224 |
-
point_labels=
|
| 225 |
multimask_output=hparams["multimask_output"]
|
| 226 |
)
|
| 227 |
generated_masks = self.format_to_auto_result(predicted_masks)
|
|
@@ -242,3 +290,34 @@ class SamInference:
|
|
| 242 |
masks = np.expand_dims(masks, axis=0)
|
| 243 |
result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
|
| 244 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from sam2.automatic_mask_generator import SAM2AutomaticMaskGenerator
|
| 2 |
from sam2.build_sam import build_sam2, build_sam2_video_predictor
|
| 3 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 4 |
+
from sam2.sam2_video_predictor import SAM2VideoPredictor
|
| 5 |
from typing import Dict, List, Optional
|
| 6 |
import torch
|
| 7 |
import os
|
|
|
|
| 14 |
download_sam_model_url
|
| 15 |
)
|
| 16 |
from modules.paths import SAM2_CONFIGS_DIR, MODELS_DIR
|
| 17 |
+
from modules.constants import BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER
|
| 18 |
from modules.mask_utils import (
|
| 19 |
save_psd_with_masks,
|
| 20 |
create_mask_combined_images,
|
| 21 |
+
create_mask_gallery,
|
| 22 |
+
create_mask_pixelized_image,
|
| 23 |
+
create_solid_color_mask_image
|
| 24 |
)
|
| 25 |
from modules.logger_util import get_logger
|
| 26 |
|
|
|
|
| 40 |
):
|
| 41 |
self.model = None
|
| 42 |
self.available_models = list(AVAILABLE_MODELS.keys())
|
| 43 |
+
self.current_model_type = DEFAULT_MODEL_TYPE
|
| 44 |
self.model_dir = model_dir
|
| 45 |
self.output_dir = output_dir
|
| 46 |
self.model_path = os.path.join(self.model_dir, AVAILABLE_MODELS[DEFAULT_MODEL_TYPE][0])
|
|
|
|
| 51 |
self.video_inference_state = None
|
| 52 |
|
| 53 |
def load_model(self,
|
| 54 |
+
model_type: Optional[str] = None,
|
| 55 |
load_video_predictor: bool = False):
|
| 56 |
+
if model_type is None:
|
| 57 |
+
model_type = DEFAULT_MODEL_TYPE
|
| 58 |
+
|
| 59 |
+
config = MODEL_CONFIGS[model_type]
|
| 60 |
+
filename, url = AVAILABLE_MODELS[model_type]
|
| 61 |
model_path = os.path.join(self.model_dir, filename)
|
| 62 |
|
| 63 |
+
if not is_sam_exist(model_type):
|
| 64 |
+
logger.info(f"No SAM2 model found, downloading {model_type} model...")
|
| 65 |
+
download_sam_model_url(model_type)
|
| 66 |
logger.info(f"Applying configs to model..")
|
| 67 |
|
| 68 |
if load_video_predictor:
|
|
|
|
| 88 |
raise f"Error while loading SAM2 model!: {e}"
|
| 89 |
|
| 90 |
def init_video_inference_state(self,
|
| 91 |
+
model_type: str,
|
| 92 |
vid_input: str):
|
| 93 |
+
|
| 94 |
+
if self.video_predictor is None or model_type != self.current_model_type:
|
| 95 |
+
self.current_model_type = model_type
|
| 96 |
+
self.load_model(model_type=model_type, load_video_predictor=True)
|
| 97 |
|
| 98 |
if self.video_inference_state is not None:
|
| 99 |
self.video_predictor.reset_state(self.video_inference_state)
|
| 100 |
+
self.video_inference_state = None
|
| 101 |
|
| 102 |
+
self.video_inference_state = self.video_predictor.init_state(video_path=vid_input)
|
| 103 |
|
| 104 |
def generate_mask(self,
|
| 105 |
image: np.ndarray,
|
| 106 |
model_type: str,
|
| 107 |
**params):
|
| 108 |
+
if self.model is None or self.current_model_type != model_type:
|
| 109 |
+
self.current_model_type = model_type
|
| 110 |
+
self.load_model(model_type=model_type)
|
| 111 |
self.mask_generator = SAM2AutomaticMaskGenerator(
|
| 112 |
model=self.model,
|
| 113 |
**params
|
|
|
|
| 126 |
point_coords: Optional[np.ndarray] = None,
|
| 127 |
point_labels: Optional[np.ndarray] = None,
|
| 128 |
**params):
|
| 129 |
+
if self.model is None or self.current_model_type != model_type:
|
| 130 |
+
self.current_model_type = model_type
|
| 131 |
+
self.load_model(model_type=model_type)
|
| 132 |
self.image_predictor = SAM2ImagePredictor(sam_model=self.model)
|
| 133 |
self.image_predictor.set_image(image)
|
| 134 |
|
|
|
|
| 148 |
frame_idx: int,
|
| 149 |
obj_id: int,
|
| 150 |
inference_state: Dict,
|
| 151 |
+
points: Optional[np.ndarray] = None,
|
| 152 |
+
labels: Optional[np.ndarray] = None,
|
| 153 |
+
box: Optional[np.ndarray] = None):
|
| 154 |
+
if self.video_predictor is None or self.video_inference_state is None:
|
| 155 |
logger.exception("Error while predicting frame from video, load video predictor first")
|
| 156 |
raise f"Error while predicting frame from video"
|
| 157 |
|
| 158 |
try:
|
| 159 |
+
out_frame_idx, out_obj_ids, out_mask_logits = self.video_predictor.add_new_points_or_box(
|
| 160 |
inference_state=inference_state,
|
| 161 |
frame_idx=frame_idx,
|
| 162 |
obj_id=obj_id,
|
| 163 |
points=points,
|
| 164 |
labels=labels,
|
| 165 |
+
box=box
|
| 166 |
)
|
| 167 |
except Exception as e:
|
| 168 |
logger.exception("Error while predicting frame with prompt")
|
| 169 |
+
print(e)
|
| 170 |
+
raise f"Error while predicting frame with prompt"
|
| 171 |
|
| 172 |
+
return out_frame_idx, out_obj_ids, out_mask_logits
|
| 173 |
|
| 174 |
def predict_video(self,
|
| 175 |
video_input):
|
| 176 |
pass
|
| 177 |
|
| 178 |
def add_filter_to_preview(self,
|
| 179 |
+
image_prompt_input_data: Dict,
|
| 180 |
+
filter_mode: str,
|
| 181 |
+
frame_idx: int,
|
| 182 |
+
pixel_size: Optional[int] = None,
|
| 183 |
+
color_hex: Optional[str] = None,
|
| 184 |
):
|
| 185 |
+
if self.video_predictor is None or self.video_inference_state is None:
|
| 186 |
+
logger.exception("Error while adding filter to preview, load video predictor first")
|
| 187 |
+
raise f"Error while adding filter to preview"
|
| 188 |
+
|
| 189 |
+
image, prompt = image_prompt_input_data["image"], image_prompt_input_data["points"]
|
| 190 |
+
image = np.array(image.convert("RGB"))
|
| 191 |
+
|
| 192 |
+
point_labels, point_coords, box = self.handle_prompt_data(prompt)
|
| 193 |
+
|
| 194 |
+
if filter_mode == COLOR_FILTER:
|
| 195 |
+
idx, scores, logits = self.predict_frame(
|
| 196 |
+
frame_idx=frame_idx,
|
| 197 |
+
obj_id=0,
|
| 198 |
+
inference_state=self.video_inference_state,
|
| 199 |
+
points=point_coords,
|
| 200 |
+
labels=point_labels,
|
| 201 |
+
box=box
|
| 202 |
+
)
|
| 203 |
+
masks = (logits[0] > 0.0).cpu().numpy()
|
| 204 |
+
generated_masks = self.format_to_auto_result(masks)
|
| 205 |
+
image = create_solid_color_mask_image(image, generated_masks, color_hex)
|
| 206 |
+
|
| 207 |
+
elif filter_mode == PIXELIZE_FILTER:
|
| 208 |
+
idx, scores, logits = self.predict_frame(
|
| 209 |
+
frame_idx=frame_idx,
|
| 210 |
+
obj_id=0,
|
| 211 |
+
inference_state=self.video_inference_state,
|
| 212 |
+
points=point_coords,
|
| 213 |
+
labels=point_labels,
|
| 214 |
+
box=box
|
| 215 |
+
)
|
| 216 |
+
print("before", logits)
|
| 217 |
+
masks = (logits[0] > 0.0).cpu().numpy()
|
| 218 |
+
generated_masks = self.format_to_auto_result(masks)
|
| 219 |
+
print("after", generated_masks)
|
| 220 |
+
image = create_mask_pixelized_image(image, generated_masks, pixel_size)
|
| 221 |
+
#
|
| 222 |
+
return image
|
| 223 |
|
| 224 |
def divide_layer(self,
|
| 225 |
image_input: np.ndarray,
|
|
|
|
| 262 |
if len(prompt) == 0:
|
| 263 |
return [image], []
|
| 264 |
|
| 265 |
+
point_labels, point_coords, box = self.handle_prompt_data(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
predicted_masks, scores, logits = self.predict_image(
|
| 268 |
image=image,
|
| 269 |
model_type=model_type,
|
| 270 |
+
box=box,
|
| 271 |
+
point_coords=point_coords,
|
| 272 |
+
point_labels=point_labels,
|
| 273 |
multimask_output=hparams["multimask_output"]
|
| 274 |
)
|
| 275 |
generated_masks = self.format_to_auto_result(predicted_masks)
|
|
|
|
| 290 |
masks = np.expand_dims(masks, axis=0)
|
| 291 |
result = [{"segmentation": mask[0], "area": place_holder} for mask in masks]
|
| 292 |
return result
|
| 293 |
+
|
| 294 |
+
@staticmethod
|
| 295 |
+
def handle_prompt_data(
|
| 296 |
+
prompt_data: List
|
| 297 |
+
):
|
| 298 |
+
"""
|
| 299 |
+
Handle data from ImageInputPrompter.
|
| 300 |
+
|
| 301 |
+
Args:
|
| 302 |
+
prompt_data (Dict): A dictionary containing the 'prompt' key with a list of prompts.
|
| 303 |
+
|
| 304 |
+
Returns:
|
| 305 |
+
point_labels (List): list of points labels.
|
| 306 |
+
point_coords (List): list of points coords.
|
| 307 |
+
box (List): list of box datas.
|
| 308 |
+
"""
|
| 309 |
+
point_labels, point_coords, box = [], [], []
|
| 310 |
+
|
| 311 |
+
for x1, y1, left_click_indicator, x2, y2, point_indicator in prompt_data:
|
| 312 |
+
is_point = point_indicator == 4.0
|
| 313 |
+
if is_point:
|
| 314 |
+
point_labels.append(left_click_indicator)
|
| 315 |
+
point_coords.append([x1, y1])
|
| 316 |
+
else:
|
| 317 |
+
box.append([x1, y1, x2, y2])
|
| 318 |
+
|
| 319 |
+
point_labels = np.array(point_labels) if point_labels else None
|
| 320 |
+
point_coords = np.array(point_coords) if point_coords else None
|
| 321 |
+
box = np.array(box) if box else None
|
| 322 |
+
|
| 323 |
+
return point_labels, point_coords, box
|