Spaces:
Runtime error
Runtime error
jhj0517
commited on
Commit
·
1b5d47b
1
Parent(s):
ee4969b
Add `invert_mask` parameter to the functions
Browse files- modules/sam_inference.py +30 -3
modules/sam_inference.py
CHANGED
|
@@ -16,6 +16,7 @@ from modules.model_downloader import (
|
|
| 16 |
from modules.paths import (MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR, MODEL_CONFIGS, OUTPUT_DIR)
|
| 17 |
from modules.constants import (BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER, IMAGE_FILE_EXT)
|
| 18 |
from modules.mask_utils import (
|
|
|
|
| 19 |
save_psd_with_masks,
|
| 20 |
create_mask_combined_images,
|
| 21 |
create_mask_gallery,
|
|
@@ -129,6 +130,7 @@ class SamInference:
|
|
| 129 |
def generate_mask(self,
|
| 130 |
image: np.ndarray,
|
| 131 |
model_type: str,
|
|
|
|
| 132 |
**params) -> List[Dict[str, Any]]:
|
| 133 |
"""
|
| 134 |
Generate masks with Automatic segmentation. Default hyperparameters are in './configs/default_hparams.yaml.'
|
|
@@ -136,6 +138,7 @@ class SamInference:
|
|
| 136 |
Args:
|
| 137 |
image (np.ndarray): The input image.
|
| 138 |
model_type (str): The model type to load.
|
|
|
|
| 139 |
**params: The hyperparameters for the mask generator.
|
| 140 |
|
| 141 |
Returns:
|
|
@@ -154,6 +157,11 @@ class SamInference:
|
|
| 154 |
except Exception as e:
|
| 155 |
logger.exception(f"Error while auto generating masks : {e}")
|
| 156 |
raise RuntimeError(f"Failed to generate masks") from e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
return generated_masks
|
| 158 |
|
| 159 |
def predict_image(self,
|
|
@@ -162,6 +170,7 @@ class SamInference:
|
|
| 162 |
box: Optional[np.ndarray] = None,
|
| 163 |
point_coords: Optional[np.ndarray] = None,
|
| 164 |
point_labels: Optional[np.ndarray] = None,
|
|
|
|
| 165 |
**params) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 166 |
"""
|
| 167 |
Predict image with prompt data.
|
|
@@ -172,6 +181,7 @@ class SamInference:
|
|
| 172 |
box (np.ndarray): The box prompt data.
|
| 173 |
point_coords (np.ndarray): The point coordinates prompt data.
|
| 174 |
point_labels (np.ndarray): The point labels prompt data.
|
|
|
|
| 175 |
**params: The hyperparameters for the mask generator.
|
| 176 |
|
| 177 |
Returns:
|
|
@@ -195,6 +205,10 @@ class SamInference:
|
|
| 195 |
except Exception as e:
|
| 196 |
logger.exception(f"Error while predicting image with prompt: {str(e)}")
|
| 197 |
raise RuntimeError(f"Failed to predict image with prompt") from e
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
return masks, scores, logits
|
| 199 |
|
| 200 |
def add_prediction_to_frame(self,
|
|
@@ -291,6 +305,7 @@ class SamInference:
|
|
| 291 |
frame_idx: int,
|
| 292 |
pixel_size: Optional[int] = None,
|
| 293 |
color_hex: Optional[str] = None,
|
|
|
|
| 294 |
):
|
| 295 |
"""
|
| 296 |
Add filter to the preview image with the prompt data. Specially made for gradio app.
|
|
@@ -302,6 +317,7 @@ class SamInference:
|
|
| 302 |
frame_idx (int): The frame index of the video.
|
| 303 |
pixel_size (int): The pixel size for the pixelize filter.
|
| 304 |
color_hex (str): The color hex code for the solid color filter.
|
|
|
|
| 305 |
|
| 306 |
Returns:
|
| 307 |
np.ndarray: The filtered image output.
|
|
@@ -332,6 +348,9 @@ class SamInference:
|
|
| 332 |
box=box
|
| 333 |
)
|
| 334 |
masks = (logits[0] > 0.0).cpu().numpy()
|
|
|
|
|
|
|
|
|
|
| 335 |
generated_masks = self.format_to_auto_result(masks)
|
| 336 |
|
| 337 |
if filter_mode == COLOR_FILTER:
|
|
@@ -347,7 +366,8 @@ class SamInference:
|
|
| 347 |
filter_mode: str,
|
| 348 |
frame_idx: int,
|
| 349 |
pixel_size: Optional[int] = None,
|
| 350 |
-
color_hex: Optional[str] = None
|
|
|
|
| 351 |
):
|
| 352 |
"""
|
| 353 |
Create a whole filtered video with video_inference_state. Currently only one frame tracking is supported.
|
|
@@ -359,6 +379,7 @@ class SamInference:
|
|
| 359 |
frame_idx (int): The frame index of the video.
|
| 360 |
pixel_size (int): The pixel size for the pixelize filter.
|
| 361 |
color_hex (str): The color hex code for the solid color filter.
|
|
|
|
| 362 |
|
| 363 |
Returns:
|
| 364 |
str: The output video path.
|
|
@@ -390,12 +411,14 @@ class SamInference:
|
|
| 390 |
inference_state=self.video_inference_state,
|
| 391 |
points=point_coords,
|
| 392 |
labels=point_labels,
|
| 393 |
-
box=box
|
| 394 |
)
|
| 395 |
|
| 396 |
video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
|
| 397 |
for frame_index, info in video_segments.items():
|
| 398 |
orig_image, masks = info["image"], info["mask"]
|
|
|
|
|
|
|
| 399 |
masks = self.format_to_auto_result(masks)
|
| 400 |
|
| 401 |
if filter_mode == COLOR_FILTER:
|
|
@@ -423,6 +446,7 @@ class SamInference:
|
|
| 423 |
image_prompt_input_data: Dict,
|
| 424 |
input_mode: str,
|
| 425 |
model_type: str,
|
|
|
|
| 426 |
*params):
|
| 427 |
"""
|
| 428 |
Divide the layer with the given prompt data and save psd file.
|
|
@@ -432,6 +456,7 @@ class SamInference:
|
|
| 432 |
image_prompt_input_data (Dict): The image prompt data.
|
| 433 |
input_mode (str): The input mode for the image prompt data. ["Automatic", "Box Prompt"]
|
| 434 |
model_type (str): The model type to load.
|
|
|
|
| 435 |
*params: The hyperparameters for the mask generator.
|
| 436 |
|
| 437 |
Returns:
|
|
@@ -463,6 +488,7 @@ class SamInference:
|
|
| 463 |
generated_masks = self.generate_mask(
|
| 464 |
image=image,
|
| 465 |
model_type=model_type,
|
|
|
|
| 466 |
**hparams
|
| 467 |
)
|
| 468 |
|
|
@@ -481,7 +507,8 @@ class SamInference:
|
|
| 481 |
box=box,
|
| 482 |
point_coords=point_coords,
|
| 483 |
point_labels=point_labels,
|
| 484 |
-
multimask_output=hparams["multimask_output"]
|
|
|
|
| 485 |
)
|
| 486 |
generated_masks = self.format_to_auto_result(predicted_masks)
|
| 487 |
|
|
|
|
| 16 |
from modules.paths import (MODELS_DIR, TEMP_OUT_DIR, TEMP_DIR, MODEL_CONFIGS, OUTPUT_DIR)
|
| 17 |
from modules.constants import (BOX_PROMPT_MODE, AUTOMATIC_MODE, COLOR_FILTER, PIXELIZE_FILTER, IMAGE_FILE_EXT)
|
| 18 |
from modules.mask_utils import (
|
| 19 |
+
invert_masks,
|
| 20 |
save_psd_with_masks,
|
| 21 |
create_mask_combined_images,
|
| 22 |
create_mask_gallery,
|
|
|
|
| 130 |
def generate_mask(self,
|
| 131 |
image: np.ndarray,
|
| 132 |
model_type: str,
|
| 133 |
+
invert_mask: bool = False,
|
| 134 |
**params) -> List[Dict[str, Any]]:
|
| 135 |
"""
|
| 136 |
Generate masks with Automatic segmentation. Default hyperparameters are in './configs/default_hparams.yaml.'
|
|
|
|
| 138 |
Args:
|
| 139 |
image (np.ndarray): The input image.
|
| 140 |
model_type (str): The model type to load.
|
| 141 |
+
invert_mask (bool): Invert the mask output - used for background masking.
|
| 142 |
**params: The hyperparameters for the mask generator.
|
| 143 |
|
| 144 |
Returns:
|
|
|
|
| 157 |
except Exception as e:
|
| 158 |
logger.exception(f"Error while auto generating masks : {e}")
|
| 159 |
raise RuntimeError(f"Failed to generate masks") from e
|
| 160 |
+
|
| 161 |
+
if invert_mask:
|
| 162 |
+
generated_masks = [{'segmentation': invert_masks(mask['segmentation']),
|
| 163 |
+
'area': mask['area']} for mask in generated_masks]
|
| 164 |
+
|
| 165 |
return generated_masks
|
| 166 |
|
| 167 |
def predict_image(self,
|
|
|
|
| 170 |
box: Optional[np.ndarray] = None,
|
| 171 |
point_coords: Optional[np.ndarray] = None,
|
| 172 |
point_labels: Optional[np.ndarray] = None,
|
| 173 |
+
invert_mask: bool = False,
|
| 174 |
**params) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
| 175 |
"""
|
| 176 |
Predict image with prompt data.
|
|
|
|
| 181 |
box (np.ndarray): The box prompt data.
|
| 182 |
point_coords (np.ndarray): The point coordinates prompt data.
|
| 183 |
point_labels (np.ndarray): The point labels prompt data.
|
| 184 |
+
invert_mask (bool): Invert the mask output - used for background masking.
|
| 185 |
**params: The hyperparameters for the mask generator.
|
| 186 |
|
| 187 |
Returns:
|
|
|
|
| 205 |
except Exception as e:
|
| 206 |
logger.exception(f"Error while predicting image with prompt: {str(e)}")
|
| 207 |
raise RuntimeError(f"Failed to predict image with prompt") from e
|
| 208 |
+
|
| 209 |
+
if invert_mask:
|
| 210 |
+
masks = invert_masks(masks)
|
| 211 |
+
|
| 212 |
return masks, scores, logits
|
| 213 |
|
| 214 |
def add_prediction_to_frame(self,
|
|
|
|
| 305 |
frame_idx: int,
|
| 306 |
pixel_size: Optional[int] = None,
|
| 307 |
color_hex: Optional[str] = None,
|
| 308 |
+
invert_mask: bool = False
|
| 309 |
):
|
| 310 |
"""
|
| 311 |
Add filter to the preview image with the prompt data. Specially made for gradio app.
|
|
|
|
| 317 |
frame_idx (int): The frame index of the video.
|
| 318 |
pixel_size (int): The pixel size for the pixelize filter.
|
| 319 |
color_hex (str): The color hex code for the solid color filter.
|
| 320 |
+
invert_mask (bool): Invert the mask output - used for background masking.
|
| 321 |
|
| 322 |
Returns:
|
| 323 |
np.ndarray: The filtered image output.
|
|
|
|
| 348 |
box=box
|
| 349 |
)
|
| 350 |
masks = (logits[0] > 0.0).cpu().numpy()
|
| 351 |
+
if invert_mask:
|
| 352 |
+
masks = invert_masks(masks)
|
| 353 |
+
|
| 354 |
generated_masks = self.format_to_auto_result(masks)
|
| 355 |
|
| 356 |
if filter_mode == COLOR_FILTER:
|
|
|
|
| 366 |
filter_mode: str,
|
| 367 |
frame_idx: int,
|
| 368 |
pixel_size: Optional[int] = None,
|
| 369 |
+
color_hex: Optional[str] = None,
|
| 370 |
+
invert_mask: bool = False
|
| 371 |
):
|
| 372 |
"""
|
| 373 |
Create a whole filtered video with video_inference_state. Currently only one frame tracking is supported.
|
|
|
|
| 379 |
frame_idx (int): The frame index of the video.
|
| 380 |
pixel_size (int): The pixel size for the pixelize filter.
|
| 381 |
color_hex (str): The color hex code for the solid color filter.
|
| 382 |
+
invert_mask (bool): Invert the mask output - used for background masking.
|
| 383 |
|
| 384 |
Returns:
|
| 385 |
str: The output video path.
|
|
|
|
| 411 |
inference_state=self.video_inference_state,
|
| 412 |
points=point_coords,
|
| 413 |
labels=point_labels,
|
| 414 |
+
box=box,
|
| 415 |
)
|
| 416 |
|
| 417 |
video_segments = self.propagate_in_video(inference_state=self.video_inference_state)
|
| 418 |
for frame_index, info in video_segments.items():
|
| 419 |
orig_image, masks = info["image"], info["mask"]
|
| 420 |
+
if invert_mask:
|
| 421 |
+
masks = invert_masks(masks)
|
| 422 |
masks = self.format_to_auto_result(masks)
|
| 423 |
|
| 424 |
if filter_mode == COLOR_FILTER:
|
|
|
|
| 446 |
image_prompt_input_data: Dict,
|
| 447 |
input_mode: str,
|
| 448 |
model_type: str,
|
| 449 |
+
invert_mask: bool = False,
|
| 450 |
*params):
|
| 451 |
"""
|
| 452 |
Divide the layer with the given prompt data and save psd file.
|
|
|
|
| 456 |
image_prompt_input_data (Dict): The image prompt data.
|
| 457 |
input_mode (str): The input mode for the image prompt data. ["Automatic", "Box Prompt"]
|
| 458 |
model_type (str): The model type to load.
|
| 459 |
+
invert_mask (bool): Invert the mask output.
|
| 460 |
*params: The hyperparameters for the mask generator.
|
| 461 |
|
| 462 |
Returns:
|
|
|
|
| 488 |
generated_masks = self.generate_mask(
|
| 489 |
image=image,
|
| 490 |
model_type=model_type,
|
| 491 |
+
invert_mask=invert_mask,
|
| 492 |
**hparams
|
| 493 |
)
|
| 494 |
|
|
|
|
| 507 |
box=box,
|
| 508 |
point_coords=point_coords,
|
| 509 |
point_labels=point_labels,
|
| 510 |
+
multimask_output=hparams["multimask_output"],
|
| 511 |
+
invert_mask=invert_mask
|
| 512 |
)
|
| 513 |
generated_masks = self.format_to_auto_result(predicted_masks)
|
| 514 |
|