Spaces:
Running
Running
jhj0517
commited on
Commit
·
595b5f3
1
Parent(s):
6148cfe
add diarization
Browse files- modules/diarize_pipeline.py +91 -0
- modules/diarizer.py +122 -0
- modules/whisper_base.py +34 -70
modules/diarize_pipeline.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from pyannote.audio import Pipeline
|
| 4 |
+
from typing import Optional, Union
|
| 5 |
+
import torch
|
| 6 |
+
import whisperx
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DiarizationPipeline:
|
| 11 |
+
def __init__(
|
| 12 |
+
self,
|
| 13 |
+
model_name="pyannote/speaker-diarization-3.1",
|
| 14 |
+
cache_dir: str = os.path.join("models", "Whisper", "whisperx"),
|
| 15 |
+
use_auth_token=None,
|
| 16 |
+
device: Optional[Union[str, torch.device]] = "cpu",
|
| 17 |
+
):
|
| 18 |
+
if isinstance(device, str):
|
| 19 |
+
device = torch.device(device)
|
| 20 |
+
self.model = Pipeline.from_pretrained(
|
| 21 |
+
model_name,
|
| 22 |
+
use_auth_token=use_auth_token,
|
| 23 |
+
cache_dir=cache_dir
|
| 24 |
+
).to(device)
|
| 25 |
+
|
| 26 |
+
def __call__(self, audio: Union[str, np.ndarray], min_speakers=None, max_speakers=None):
|
| 27 |
+
if isinstance(audio, str):
|
| 28 |
+
audio = whisperx.load_audio(audio)
|
| 29 |
+
audio_data = {
|
| 30 |
+
'waveform': torch.from_numpy(audio[None, :]),
|
| 31 |
+
'sample_rate': whisperx.audio.SAMPLE_RATE
|
| 32 |
+
}
|
| 33 |
+
segments = self.model(audio_data, min_speakers=min_speakers, max_speakers=max_speakers)
|
| 34 |
+
diarize_df = pd.DataFrame(segments.itertracks(yield_label=True), columns=['segment', 'label', 'speaker'])
|
| 35 |
+
diarize_df['start'] = diarize_df['segment'].apply(lambda x: x.start)
|
| 36 |
+
diarize_df['end'] = diarize_df['segment'].apply(lambda x: x.end)
|
| 37 |
+
return diarize_df
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def assign_word_speakers(diarize_df, transcript_result, fill_nearest=False):
|
| 41 |
+
transcript_segments = transcript_result["segments"]
|
| 42 |
+
for seg in transcript_segments:
|
| 43 |
+
# assign speaker to segment (if any)
|
| 44 |
+
diarize_df['intersection'] = np.minimum(diarize_df['end'], seg['end']) - np.maximum(diarize_df['start'],
|
| 45 |
+
seg['start'])
|
| 46 |
+
diarize_df['union'] = np.maximum(diarize_df['end'], seg['end']) - np.minimum(diarize_df['start'], seg['start'])
|
| 47 |
+
|
| 48 |
+
intersected = diarize_df[diarize_df["intersection"] > 0]
|
| 49 |
+
|
| 50 |
+
speaker = None
|
| 51 |
+
if len(intersected) > 0:
|
| 52 |
+
# Choosing most strong intersection
|
| 53 |
+
speaker = intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
|
| 54 |
+
elif fill_nearest:
|
| 55 |
+
# Otherwise choosing closest
|
| 56 |
+
speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0]
|
| 57 |
+
|
| 58 |
+
if speaker is not None:
|
| 59 |
+
seg["speaker"] = speaker
|
| 60 |
+
|
| 61 |
+
# assign speaker to words
|
| 62 |
+
if 'words' in seg:
|
| 63 |
+
for word in seg['words']:
|
| 64 |
+
if 'start' in word:
|
| 65 |
+
diarize_df['intersection'] = np.minimum(diarize_df['end'], word['end']) - np.maximum(
|
| 66 |
+
diarize_df['start'], word['start'])
|
| 67 |
+
diarize_df['union'] = np.maximum(diarize_df['end'], word['end']) - np.minimum(diarize_df['start'],
|
| 68 |
+
word['start'])
|
| 69 |
+
|
| 70 |
+
intersected = diarize_df[diarize_df["intersection"] > 0]
|
| 71 |
+
|
| 72 |
+
word_speaker = None
|
| 73 |
+
if len(intersected) > 0:
|
| 74 |
+
# Choosing most strong intersection
|
| 75 |
+
word_speaker = \
|
| 76 |
+
intersected.groupby("speaker")["intersection"].sum().sort_values(ascending=False).index[0]
|
| 77 |
+
elif fill_nearest:
|
| 78 |
+
# Otherwise choosing closest
|
| 79 |
+
word_speaker = diarize_df.sort_values(by=["intersection"], ascending=False)["speaker"].values[0]
|
| 80 |
+
|
| 81 |
+
if word_speaker is not None:
|
| 82 |
+
word["speaker"] = word_speaker
|
| 83 |
+
|
| 84 |
+
return transcript_result
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class Segment:
|
| 88 |
+
def __init__(self, start, end, speaker=None):
|
| 89 |
+
self.start = start
|
| 90 |
+
self.end = end
|
| 91 |
+
self.speaker = speaker
|
modules/diarizer.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import whisperx
|
| 3 |
+
import torch
|
| 4 |
+
from typing import List
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
from modules.diarize_pipeline import DiarizationPipeline
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Diarizer:
|
| 11 |
+
def __init__(self,
|
| 12 |
+
model_dir: str = os.path.join("models", "Whisper", "whisperx")
|
| 13 |
+
):
|
| 14 |
+
self.device = self.get_device()
|
| 15 |
+
self.available_device = self.get_available_device()
|
| 16 |
+
self.compute_type = "float16"
|
| 17 |
+
self.model_dir = model_dir
|
| 18 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
| 19 |
+
self.pipe = None
|
| 20 |
+
|
| 21 |
+
def run(self,
|
| 22 |
+
audio: str,
|
| 23 |
+
transcribed_result: List[dict],
|
| 24 |
+
use_auth_token: str,
|
| 25 |
+
device: str
|
| 26 |
+
):
|
| 27 |
+
"""
|
| 28 |
+
Diarize transcribed result as a post-processing
|
| 29 |
+
|
| 30 |
+
Parameters
|
| 31 |
+
----------
|
| 32 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
| 33 |
+
Audio input. This can be file path or binary type.
|
| 34 |
+
transcribed_result: List[dict]
|
| 35 |
+
transcribed result through whisper.
|
| 36 |
+
use_auth_token: str
|
| 37 |
+
Huggingface token with READ permission. This is only needed the first time you download the model.
|
| 38 |
+
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
|
| 39 |
+
device: str
|
| 40 |
+
Device for diarization.
|
| 41 |
+
|
| 42 |
+
Returns
|
| 43 |
+
----------
|
| 44 |
+
segments_result: List[dict]
|
| 45 |
+
list of dicts that includes start, end timestamps and transcribed text
|
| 46 |
+
elapsed_time: float
|
| 47 |
+
elapsed time for running
|
| 48 |
+
"""
|
| 49 |
+
start_time = time.time()
|
| 50 |
+
|
| 51 |
+
if (device != self.device
|
| 52 |
+
or self.pipe is None):
|
| 53 |
+
self.update_pipe(
|
| 54 |
+
device=device,
|
| 55 |
+
use_auth_token=use_auth_token
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
audio = whisperx.load_audio(audio)
|
| 59 |
+
diarization_segments = self.pipe(audio)
|
| 60 |
+
diarized_result = whisperx.assign_word_speakers(
|
| 61 |
+
diarization_segments,
|
| 62 |
+
{"segments": transcribed_result}
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
for segment in diarized_result["segments"]:
|
| 66 |
+
speaker = "None"
|
| 67 |
+
if "speaker" in segment:
|
| 68 |
+
speaker = segment["speaker"]
|
| 69 |
+
segment["text"] = speaker + "|" + segment["text"][1:]
|
| 70 |
+
|
| 71 |
+
elapsed_time = time.time() - start_time
|
| 72 |
+
return diarized_result["segments"], elapsed_time
|
| 73 |
+
|
| 74 |
+
def update_pipe(self,
|
| 75 |
+
use_auth_token: str,
|
| 76 |
+
device: str
|
| 77 |
+
):
|
| 78 |
+
"""
|
| 79 |
+
Set pipeline for diarization
|
| 80 |
+
|
| 81 |
+
Parameters
|
| 82 |
+
----------
|
| 83 |
+
use_auth_token: str
|
| 84 |
+
Huggingface token with READ permission. This is only needed the first time you download the model.
|
| 85 |
+
You must manually go to the website https://huggingface.co/pyannote/speaker-diarization-3.1 and agree to their TOS to download the model.
|
| 86 |
+
device: str
|
| 87 |
+
Device for diarization.
|
| 88 |
+
"""
|
| 89 |
+
|
| 90 |
+
os.makedirs(self.model_dir, exist_ok=True)
|
| 91 |
+
|
| 92 |
+
if (not os.listdir(self.model_dir) and
|
| 93 |
+
not use_auth_token):
|
| 94 |
+
print(
|
| 95 |
+
"\nFailed to diarize. You need huggingface token and agree to their requirements to download the diarization model.\n"
|
| 96 |
+
"Go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and follow their instructions to download the model.\n"
|
| 97 |
+
)
|
| 98 |
+
return
|
| 99 |
+
|
| 100 |
+
self.pipe = DiarizationPipeline(
|
| 101 |
+
use_auth_token=use_auth_token,
|
| 102 |
+
device=device,
|
| 103 |
+
cache_dir=self.model_dir
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
@staticmethod
|
| 107 |
+
def get_device():
|
| 108 |
+
if torch.cuda.is_available():
|
| 109 |
+
return "cuda"
|
| 110 |
+
elif torch.backends.mps.is_available():
|
| 111 |
+
return "mps"
|
| 112 |
+
else:
|
| 113 |
+
return "cpu"
|
| 114 |
+
|
| 115 |
+
@staticmethod
|
| 116 |
+
def get_available_device():
|
| 117 |
+
devices = ["cpu"]
|
| 118 |
+
if torch.cuda.is_available():
|
| 119 |
+
devices.append("cuda")
|
| 120 |
+
elif torch.backends.mps.is_available():
|
| 121 |
+
devices.append("mps")
|
| 122 |
+
return devices
|
modules/whisper_base.py
CHANGED
|
@@ -1,19 +1,18 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
from typing import List
|
| 4 |
-
import whisperx
|
| 5 |
import whisper
|
| 6 |
import gradio as gr
|
| 7 |
from abc import ABC, abstractmethod
|
| 8 |
from typing import BinaryIO, Union, Tuple, List
|
| 9 |
import numpy as np
|
| 10 |
from datetime import datetime
|
| 11 |
-
from dataclasses import astuple
|
| 12 |
import time
|
| 13 |
|
| 14 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 15 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 16 |
from modules.whisper_parameter import *
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
class WhisperBase(ABC):
|
|
@@ -24,20 +23,16 @@ class WhisperBase(ABC):
|
|
| 24 |
self.model = None
|
| 25 |
self.current_model_size = None
|
| 26 |
self.model_dir = model_dir
|
| 27 |
-
self.diarization_model_dir = os.path.join(self.model_dir, "..", "whisperx")
|
| 28 |
self.output_dir = output_dir
|
| 29 |
os.makedirs(self.output_dir, exist_ok=True)
|
| 30 |
os.makedirs(self.model_dir, exist_ok=True)
|
| 31 |
-
os.makedirs(self.diarization_model_dir, exist_ok=True)
|
| 32 |
self.available_models = whisper.available_models()
|
| 33 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 34 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
| 35 |
self.device = self.get_device()
|
| 36 |
self.available_compute_types = ["float16", "float32"]
|
| 37 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
| 38 |
-
self.
|
| 39 |
-
self.diarization_model_metadata = None
|
| 40 |
-
self.diarization_pipe = None
|
| 41 |
|
| 42 |
@abstractmethod
|
| 43 |
def transcribe(self,
|
|
@@ -59,8 +54,28 @@ class WhisperBase(ABC):
|
|
| 59 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 60 |
progress: gr.Progress,
|
| 61 |
*whisper_params,
|
| 62 |
-
):
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
if params.lang == "Automatic Detection":
|
| 66 |
params.lang = None
|
|
@@ -75,65 +90,14 @@ class WhisperBase(ABC):
|
|
| 75 |
)
|
| 76 |
|
| 77 |
if params.is_diarize:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
result,
|
| 82 |
-
|
| 83 |
-
language_code=params.lang,
|
| 84 |
-
use_auth_token=params.hf_token,
|
| 85 |
-
transcribed_result=result
|
| 86 |
-
)
|
| 87 |
-
elapsed_time += elapsed_time_diarization
|
| 88 |
-
return result, elapsed_time
|
| 89 |
-
|
| 90 |
-
def diarize(self,
|
| 91 |
-
audio: str,
|
| 92 |
-
language_code: str,
|
| 93 |
-
use_auth_token: str,
|
| 94 |
-
transcribed_result: List[dict]
|
| 95 |
-
):
|
| 96 |
-
start_time = time.time()
|
| 97 |
-
|
| 98 |
-
if (self.diarization_model is None or
|
| 99 |
-
self.diarization_model_metadata is None or
|
| 100 |
-
self.diarization_pipe is None):
|
| 101 |
-
self._update_diarization_model(
|
| 102 |
-
language_code=language_code,
|
| 103 |
-
use_auth_token=use_auth_token
|
| 104 |
)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
diarization_segments = self.diarization_pipe(audio)
|
| 108 |
-
diarized_result = whisperx.assign_word_speakers(
|
| 109 |
-
diarization_segments,
|
| 110 |
-
{"segments": transcribed_result}
|
| 111 |
-
)
|
| 112 |
-
|
| 113 |
-
for segment in diarized_result["segments"]:
|
| 114 |
-
speaker = "None"
|
| 115 |
-
if "speaker" in segment:
|
| 116 |
-
speaker = segment["speaker"]
|
| 117 |
-
|
| 118 |
-
segment["text"] = speaker + "|" + segment["text"][1:]
|
| 119 |
-
|
| 120 |
-
elapsed_time = time.time() - start_time
|
| 121 |
-
return diarized_result["segments"], elapsed_time
|
| 122 |
-
|
| 123 |
-
def _update_diarization_model(self,
|
| 124 |
-
use_auth_token: str,
|
| 125 |
-
language_code: str
|
| 126 |
-
):
|
| 127 |
-
print("loading diarization model...")
|
| 128 |
-
self.diarization_model, self.diarization_model_metadata = whisperx.load_align_model(
|
| 129 |
-
language_code=language_code,
|
| 130 |
-
device=self.device,
|
| 131 |
-
model_dir=self.diarization_model_dir,
|
| 132 |
-
)
|
| 133 |
-
self.diarization_pipe = whisperx.DiarizationPipeline(
|
| 134 |
-
use_auth_token=use_auth_token,
|
| 135 |
-
device=self.device
|
| 136 |
-
)
|
| 137 |
|
| 138 |
def transcribe_file(self,
|
| 139 |
files: list,
|
|
@@ -156,7 +120,7 @@ class WhisperBase(ABC):
|
|
| 156 |
progress: gr.Progress
|
| 157 |
Indicator to show progress directly in gradio.
|
| 158 |
*whisper_params: tuple
|
| 159 |
-
|
| 160 |
|
| 161 |
Returns
|
| 162 |
----------
|
|
@@ -223,7 +187,7 @@ class WhisperBase(ABC):
|
|
| 223 |
progress: gr.Progress
|
| 224 |
Indicator to show progress directly in gradio.
|
| 225 |
*whisper_params: tuple
|
| 226 |
-
|
| 227 |
|
| 228 |
Returns
|
| 229 |
----------
|
|
@@ -278,7 +242,7 @@ class WhisperBase(ABC):
|
|
| 278 |
progress: gr.Progress
|
| 279 |
Indicator to show progress directly in gradio.
|
| 280 |
*whisper_params: tuple
|
| 281 |
-
|
| 282 |
|
| 283 |
Returns
|
| 284 |
----------
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
from typing import List
|
|
|
|
| 4 |
import whisper
|
| 5 |
import gradio as gr
|
| 6 |
from abc import ABC, abstractmethod
|
| 7 |
from typing import BinaryIO, Union, Tuple, List
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime
|
|
|
|
| 10 |
import time
|
| 11 |
|
| 12 |
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 13 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 14 |
from modules.whisper_parameter import *
|
| 15 |
+
from modules.diarizer import Diarizer
|
| 16 |
|
| 17 |
|
| 18 |
class WhisperBase(ABC):
|
|
|
|
| 23 |
self.model = None
|
| 24 |
self.current_model_size = None
|
| 25 |
self.model_dir = model_dir
|
|
|
|
| 26 |
self.output_dir = output_dir
|
| 27 |
os.makedirs(self.output_dir, exist_ok=True)
|
| 28 |
os.makedirs(self.model_dir, exist_ok=True)
|
|
|
|
| 29 |
self.available_models = whisper.available_models()
|
| 30 |
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
| 31 |
self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
|
| 32 |
self.device = self.get_device()
|
| 33 |
self.available_compute_types = ["float16", "float32"]
|
| 34 |
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
|
| 35 |
+
self.diarizer = Diarizer()
|
|
|
|
|
|
|
| 36 |
|
| 37 |
@abstractmethod
|
| 38 |
def transcribe(self,
|
|
|
|
| 54 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 55 |
progress: gr.Progress,
|
| 56 |
*whisper_params,
|
| 57 |
+
) -> Tuple[List[dict], float]:
|
| 58 |
+
"""
|
| 59 |
+
Run transcription with conditional post-processing.
|
| 60 |
+
The diarization will be performed in post-processing if enabled.
|
| 61 |
+
|
| 62 |
+
Parameters
|
| 63 |
+
----------
|
| 64 |
+
audio: Union[str, BinaryIO, np.ndarray]
|
| 65 |
+
Audio input. This can be file path or binary type.
|
| 66 |
+
progress: gr.Progress
|
| 67 |
+
Indicator to show progress directly in gradio.
|
| 68 |
+
*whisper_params: tuple
|
| 69 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 70 |
+
|
| 71 |
+
Returns
|
| 72 |
+
----------
|
| 73 |
+
segments_result: List[dict]
|
| 74 |
+
list of dicts that includes start, end timestamps and transcribed text
|
| 75 |
+
elapsed_time: float
|
| 76 |
+
elapsed time for running
|
| 77 |
+
"""
|
| 78 |
+
params = WhisperParameters.as_value(*whisper_params)
|
| 79 |
|
| 80 |
if params.lang == "Automatic Detection":
|
| 81 |
params.lang = None
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
if params.is_diarize:
|
| 93 |
+
result, elapsed_time_diarization = self.diarizer.run(
|
| 94 |
+
audio=audio,
|
| 95 |
+
use_auth_token=params.hf_token,
|
| 96 |
+
transcribed_result=result,
|
| 97 |
+
device=self.device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
+
elapsed_time += elapsed_time_diarization
|
| 100 |
+
return result, elapsed_time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
def transcribe_file(self,
|
| 103 |
files: list,
|
|
|
|
| 120 |
progress: gr.Progress
|
| 121 |
Indicator to show progress directly in gradio.
|
| 122 |
*whisper_params: tuple
|
| 123 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 124 |
|
| 125 |
Returns
|
| 126 |
----------
|
|
|
|
| 187 |
progress: gr.Progress
|
| 188 |
Indicator to show progress directly in gradio.
|
| 189 |
*whisper_params: tuple
|
| 190 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 191 |
|
| 192 |
Returns
|
| 193 |
----------
|
|
|
|
| 242 |
progress: gr.Progress
|
| 243 |
Indicator to show progress directly in gradio.
|
| 244 |
*whisper_params: tuple
|
| 245 |
+
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
|
| 246 |
|
| 247 |
Returns
|
| 248 |
----------
|