Spaces:
Running
Running
jhj0517
commited on
Commit
·
501c404
1
Parent(s):
37be773
Update model usage
Browse files
modules/whisper/faster_whisper_inference.py
CHANGED
|
@@ -62,7 +62,7 @@ class FasterWhisperInference(WhisperBase):
|
|
| 62 |
"""
|
| 63 |
start_time = time.time()
|
| 64 |
|
| 65 |
-
params =
|
| 66 |
|
| 67 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 68 |
self.update_model(params.model_size, params.compute_type, progress)
|
|
|
|
| 62 |
"""
|
| 63 |
start_time = time.time()
|
| 64 |
|
| 65 |
+
params = WhisperParams.from_list(list(whisper_params))
|
| 66 |
|
| 67 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 68 |
self.update_model(params.model_size, params.compute_type, progress)
|
modules/whisper/insanely_fast_whisper_inference.py
CHANGED
|
@@ -61,7 +61,7 @@ class InsanelyFastWhisperInference(WhisperBase):
|
|
| 61 |
elapsed time for transcription
|
| 62 |
"""
|
| 63 |
start_time = time.time()
|
| 64 |
-
params =
|
| 65 |
|
| 66 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 67 |
self.update_model(params.model_size, params.compute_type, progress)
|
|
|
|
| 61 |
elapsed time for transcription
|
| 62 |
"""
|
| 63 |
start_time = time.time()
|
| 64 |
+
params = WhisperParams.from_list(list(whisper_params))
|
| 65 |
|
| 66 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 67 |
self.update_model(params.model_size, params.compute_type, progress)
|
modules/whisper/whisper_Inference.py
CHANGED
|
@@ -51,7 +51,7 @@ class WhisperInference(WhisperBase):
|
|
| 51 |
elapsed time for transcription
|
| 52 |
"""
|
| 53 |
start_time = time.time()
|
| 54 |
-
params =
|
| 55 |
|
| 56 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 57 |
self.update_model(params.model_size, params.compute_type, progress)
|
|
|
|
| 51 |
elapsed time for transcription
|
| 52 |
"""
|
| 53 |
start_time = time.time()
|
| 54 |
+
params = WhisperParams.from_list(list(whisper_params))
|
| 55 |
|
| 56 |
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
|
| 57 |
self.update_model(params.model_size, params.compute_type, progress)
|
modules/whisper/whisper_base.py
CHANGED
|
@@ -74,7 +74,7 @@ class WhisperBase(ABC):
|
|
| 74 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 75 |
progress: gr.Progress = gr.Progress(),
|
| 76 |
add_timestamp: bool = True,
|
| 77 |
-
*
|
| 78 |
) -> Tuple[List[dict], float]:
|
| 79 |
"""
|
| 80 |
Run transcription with conditional pre-processing and post-processing.
|
|
@@ -89,8 +89,8 @@ class WhisperBase(ABC):
|
|
| 89 |
Indicator to show progress directly in gradio.
|
| 90 |
add_timestamp: bool
|
| 91 |
Whether to add a timestamp at the end of the filename.
|
| 92 |
-
*
|
| 93 |
-
Parameters
|
| 94 |
|
| 95 |
Returns
|
| 96 |
----------
|
|
@@ -99,28 +99,29 @@ class WhisperBase(ABC):
|
|
| 99 |
elapsed_time: float
|
| 100 |
elapsed time for running
|
| 101 |
"""
|
| 102 |
-
params =
|
|
|
|
| 103 |
|
| 104 |
self.cache_parameters(
|
| 105 |
-
|
| 106 |
add_timestamp=add_timestamp
|
| 107 |
)
|
| 108 |
|
| 109 |
-
if
|
| 110 |
pass
|
| 111 |
-
elif
|
| 112 |
-
|
| 113 |
else:
|
| 114 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
| 115 |
-
|
| 116 |
|
| 117 |
-
if
|
| 118 |
music, audio, _ = self.music_separator.separate(
|
| 119 |
audio=audio,
|
| 120 |
-
model_name=
|
| 121 |
-
device=
|
| 122 |
-
segment_size=
|
| 123 |
-
save_file=
|
| 124 |
progress=progress
|
| 125 |
)
|
| 126 |
|
|
@@ -132,20 +133,20 @@ class WhisperBase(ABC):
|
|
| 132 |
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
| 133 |
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
| 134 |
|
| 135 |
-
if
|
| 136 |
self.music_separator.offload()
|
| 137 |
|
| 138 |
-
if
|
| 139 |
# Explicit value set for float('inf') from gr.Number()
|
| 140 |
-
if
|
| 141 |
-
|
| 142 |
|
| 143 |
vad_options = VadOptions(
|
| 144 |
-
threshold=
|
| 145 |
-
min_speech_duration_ms=
|
| 146 |
-
max_speech_duration_s=
|
| 147 |
-
min_silence_duration_ms=
|
| 148 |
-
speech_pad_ms=
|
| 149 |
)
|
| 150 |
|
| 151 |
audio, speech_chunks = self.vad.run(
|
|
@@ -157,20 +158,21 @@ class WhisperBase(ABC):
|
|
| 157 |
result, elapsed_time = self.transcribe(
|
| 158 |
audio,
|
| 159 |
progress,
|
| 160 |
-
*
|
| 161 |
)
|
| 162 |
|
| 163 |
-
if
|
| 164 |
result = self.vad.restore_speech_timestamps(
|
| 165 |
segments=result,
|
| 166 |
-
speech_chunks=speech_chunks,
|
| 167 |
)
|
| 168 |
|
| 169 |
-
if
|
| 170 |
result, elapsed_time_diarization = self.diarizer.run(
|
| 171 |
audio=audio,
|
| 172 |
-
use_auth_token=
|
| 173 |
transcribed_result=result,
|
|
|
|
| 174 |
)
|
| 175 |
elapsed_time += elapsed_time_diarization
|
| 176 |
return result, elapsed_time
|
|
@@ -181,7 +183,7 @@ class WhisperBase(ABC):
|
|
| 181 |
file_format: str = "SRT",
|
| 182 |
add_timestamp: bool = True,
|
| 183 |
progress=gr.Progress(),
|
| 184 |
-
*
|
| 185 |
) -> list:
|
| 186 |
"""
|
| 187 |
Write subtitle file from Files
|
|
@@ -199,8 +201,8 @@ class WhisperBase(ABC):
|
|
| 199 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
| 200 |
progress: gr.Progress
|
| 201 |
Indicator to show progress directly in gradio.
|
| 202 |
-
*
|
| 203 |
-
Parameters
|
| 204 |
|
| 205 |
Returns
|
| 206 |
----------
|
|
@@ -223,7 +225,7 @@ class WhisperBase(ABC):
|
|
| 223 |
file,
|
| 224 |
progress,
|
| 225 |
add_timestamp,
|
| 226 |
-
*
|
| 227 |
)
|
| 228 |
|
| 229 |
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
|
@@ -514,13 +516,14 @@ class WhisperBase(ABC):
|
|
| 514 |
|
| 515 |
@staticmethod
|
| 516 |
def cache_parameters(
|
| 517 |
-
|
| 518 |
add_timestamp: bool
|
| 519 |
):
|
| 520 |
"""cache parameters to the yaml file"""
|
| 521 |
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
| 522 |
-
|
| 523 |
-
|
|
|
|
| 524 |
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
| 525 |
|
| 526 |
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
|
|
|
| 74 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 75 |
progress: gr.Progress = gr.Progress(),
|
| 76 |
add_timestamp: bool = True,
|
| 77 |
+
*pipeline_params,
|
| 78 |
) -> Tuple[List[dict], float]:
|
| 79 |
"""
|
| 80 |
Run transcription with conditional pre-processing and post-processing.
|
|
|
|
| 89 |
Indicator to show progress directly in gradio.
|
| 90 |
add_timestamp: bool
|
| 91 |
Whether to add a timestamp at the end of the filename.
|
| 92 |
+
*pipeline_params: tuple
|
| 93 |
+
Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class
|
| 94 |
|
| 95 |
Returns
|
| 96 |
----------
|
|
|
|
| 99 |
elapsed_time: float
|
| 100 |
elapsed time for running
|
| 101 |
"""
|
| 102 |
+
params = TranscriptionPipelineParams.from_list(list(pipeline_params))
|
| 103 |
+
bgm_params, vad_params, whisper_params, diarization_params = params.bgm_separation, params.vad, params.whisper, params.diarization
|
| 104 |
|
| 105 |
self.cache_parameters(
|
| 106 |
+
params=params,
|
| 107 |
add_timestamp=add_timestamp
|
| 108 |
)
|
| 109 |
|
| 110 |
+
if whisper_params.lang is None:
|
| 111 |
pass
|
| 112 |
+
elif whisper_params.lang == AUTOMATIC_DETECTION:
|
| 113 |
+
whisper_params.lang = None
|
| 114 |
else:
|
| 115 |
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
|
| 116 |
+
whisper_params.lang = language_code_dict[params.lang]
|
| 117 |
|
| 118 |
+
if bgm_params.is_separate_bgm:
|
| 119 |
music, audio, _ = self.music_separator.separate(
|
| 120 |
audio=audio,
|
| 121 |
+
model_name=bgm_params.model_size,
|
| 122 |
+
device=bgm_params.device,
|
| 123 |
+
segment_size=bgm_params.segment_size,
|
| 124 |
+
save_file=bgm_params.save_file,
|
| 125 |
progress=progress
|
| 126 |
)
|
| 127 |
|
|
|
|
| 133 |
origin_sample_rate = self.music_separator.audio_info.sample_rate
|
| 134 |
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
|
| 135 |
|
| 136 |
+
if bgm_params.enable_offload:
|
| 137 |
self.music_separator.offload()
|
| 138 |
|
| 139 |
+
if vad_params.vad_filter:
|
| 140 |
# Explicit value set for float('inf') from gr.Number()
|
| 141 |
+
if vad_params.max_speech_duration_s is None or vad_params.max_speech_duration_s >= 9999:
|
| 142 |
+
vad_params.max_speech_duration_s = float('inf')
|
| 143 |
|
| 144 |
vad_options = VadOptions(
|
| 145 |
+
threshold=vad_params.threshold,
|
| 146 |
+
min_speech_duration_ms=vad_params.min_speech_duration_ms,
|
| 147 |
+
max_speech_duration_s=vad_params.max_speech_duration_s,
|
| 148 |
+
min_silence_duration_ms=vad_params.min_silence_duration_ms,
|
| 149 |
+
speech_pad_ms=vad_params.speech_pad_ms
|
| 150 |
)
|
| 151 |
|
| 152 |
audio, speech_chunks = self.vad.run(
|
|
|
|
| 158 |
result, elapsed_time = self.transcribe(
|
| 159 |
audio,
|
| 160 |
progress,
|
| 161 |
+
*whisper_params.to_list()
|
| 162 |
)
|
| 163 |
|
| 164 |
+
if vad_params.vad_filter:
|
| 165 |
result = self.vad.restore_speech_timestamps(
|
| 166 |
segments=result,
|
| 167 |
+
speech_chunks=vad_params.speech_chunks,
|
| 168 |
)
|
| 169 |
|
| 170 |
+
if diarization_params.is_diarize:
|
| 171 |
result, elapsed_time_diarization = self.diarizer.run(
|
| 172 |
audio=audio,
|
| 173 |
+
use_auth_token=diarization_params.hf_token,
|
| 174 |
transcribed_result=result,
|
| 175 |
+
device=diarization_params.device
|
| 176 |
)
|
| 177 |
elapsed_time += elapsed_time_diarization
|
| 178 |
return result, elapsed_time
|
|
|
|
| 183 |
file_format: str = "SRT",
|
| 184 |
add_timestamp: bool = True,
|
| 185 |
progress=gr.Progress(),
|
| 186 |
+
*params,
|
| 187 |
) -> list:
|
| 188 |
"""
|
| 189 |
Write subtitle file from Files
|
|
|
|
| 201 |
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
|
| 202 |
progress: gr.Progress
|
| 203 |
Indicator to show progress directly in gradio.
|
| 204 |
+
*params: tuple
|
| 205 |
+
Parameters for the transcription pipeline. This will be dealt with "TranscriptionPipelineParams" data class
|
| 206 |
|
| 207 |
Returns
|
| 208 |
----------
|
|
|
|
| 225 |
file,
|
| 226 |
progress,
|
| 227 |
add_timestamp,
|
| 228 |
+
*params,
|
| 229 |
)
|
| 230 |
|
| 231 |
file_name, file_ext = os.path.splitext(os.path.basename(file))
|
|
|
|
| 516 |
|
| 517 |
@staticmethod
|
| 518 |
def cache_parameters(
|
| 519 |
+
params: TranscriptionPipelineParams,
|
| 520 |
add_timestamp: bool
|
| 521 |
):
|
| 522 |
"""cache parameters to the yaml file"""
|
| 523 |
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
| 524 |
+
param_to_cache = params.to_dict()
|
| 525 |
+
|
| 526 |
+
cached_yaml = {**cached_params, **param_to_cache}
|
| 527 |
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
|
| 528 |
|
| 529 |
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
|
tests/test_transcription.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
from modules.whisper.whisper_factory import WhisperFactory
|
| 2 |
-
from modules.whisper.data_classes import
|
| 3 |
from modules.utils.paths import WEBUI_DIR
|
| 4 |
from test_config import *
|
| 5 |
|
|
@@ -38,13 +38,21 @@ def test_transcribe(
|
|
| 38 |
)
|
| 39 |
|
| 40 |
hparams = TranscriptionPipelineParams(
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
subtitle_str, file_path = whisper_inferencer.transcribe_file(
|
| 50 |
[audio_path],
|
|
|
|
| 1 |
from modules.whisper.whisper_factory import WhisperFactory
|
| 2 |
+
from modules.whisper.data_classes import *
|
| 3 |
from modules.utils.paths import WEBUI_DIR
|
| 4 |
from test_config import *
|
| 5 |
|
|
|
|
| 38 |
)
|
| 39 |
|
| 40 |
hparams = TranscriptionPipelineParams(
|
| 41 |
+
whisper=WhisperParams(
|
| 42 |
+
model_size=TEST_WHISPER_MODEL,
|
| 43 |
+
compute_type=whisper_inferencer.current_compute_type
|
| 44 |
+
),
|
| 45 |
+
vad=VadParams(
|
| 46 |
+
vad_filter=vad_filter
|
| 47 |
+
),
|
| 48 |
+
bgm_separation=BGMSeparationParams(
|
| 49 |
+
is_separate_bgm=bgm_separation,
|
| 50 |
+
enable_offload=True
|
| 51 |
+
),
|
| 52 |
+
diarization=DiarizationParams(
|
| 53 |
+
is_diarize=diarization
|
| 54 |
+
),
|
| 55 |
+
).to_list()
|
| 56 |
|
| 57 |
subtitle_str, file_path = whisper_inferencer.transcribe_file(
|
| 58 |
[audio_path],
|