Spaces:
Running
Running
Merge pull request #54 from jhj0517/add-raw-type
Browse files- app.py +6 -6
- modules/faster_whisper_inference.py +34 -28
- modules/subtitle_manager.py +9 -0
- modules/whisper_Inference.py +33 -28
app.py
CHANGED
|
@@ -50,7 +50,7 @@ class App:
|
|
| 50 |
label="Model")
|
| 51 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 52 |
value="Automatic Detection", label="Language")
|
| 53 |
-
|
| 54 |
with gr.Row():
|
| 55 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 56 |
with gr.Row():
|
|
@@ -66,7 +66,7 @@ class App:
|
|
| 66 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 67 |
btn_openfolder = gr.Button('π', scale=2)
|
| 68 |
|
| 69 |
-
params = [input_file, dd_model, dd_lang,
|
| 70 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 71 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 72 |
inputs=params + advanced_params,
|
|
@@ -88,7 +88,7 @@ class App:
|
|
| 88 |
label="Model")
|
| 89 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 90 |
value="Automatic Detection", label="Language")
|
| 91 |
-
|
| 92 |
with gr.Row():
|
| 93 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 94 |
with gr.Row():
|
|
@@ -105,7 +105,7 @@ class App:
|
|
| 105 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 106 |
btn_openfolder = gr.Button('π', scale=2)
|
| 107 |
|
| 108 |
-
params = [tb_youtubelink, dd_model, dd_lang,
|
| 109 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 110 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 111 |
inputs=params + advanced_params,
|
|
@@ -123,7 +123,7 @@ class App:
|
|
| 123 |
label="Model")
|
| 124 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 125 |
value="Automatic Detection", label="Language")
|
| 126 |
-
|
| 127 |
with gr.Row():
|
| 128 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 129 |
with gr.Accordion("Advanced_Parameters", open=False):
|
|
@@ -137,7 +137,7 @@ class App:
|
|
| 137 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 138 |
btn_openfolder = gr.Button('π', scale=2)
|
| 139 |
|
| 140 |
-
params = [mic_input, dd_model, dd_lang,
|
| 141 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 142 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 143 |
inputs=params + advanced_params,
|
|
|
|
| 50 |
label="Model")
|
| 51 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 52 |
value="Automatic Detection", label="Language")
|
| 53 |
+
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
|
| 54 |
with gr.Row():
|
| 55 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 56 |
with gr.Row():
|
|
|
|
| 66 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 67 |
btn_openfolder = gr.Button('π', scale=2)
|
| 68 |
|
| 69 |
+
params = [input_file, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
|
| 70 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 71 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 72 |
inputs=params + advanced_params,
|
|
|
|
| 88 |
label="Model")
|
| 89 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 90 |
value="Automatic Detection", label="Language")
|
| 91 |
+
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
|
| 92 |
with gr.Row():
|
| 93 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 94 |
with gr.Row():
|
|
|
|
| 105 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 106 |
btn_openfolder = gr.Button('π', scale=2)
|
| 107 |
|
| 108 |
+
params = [tb_youtubelink, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
|
| 109 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 110 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 111 |
inputs=params + advanced_params,
|
|
|
|
| 123 |
label="Model")
|
| 124 |
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
|
| 125 |
value="Automatic Detection", label="Language")
|
| 126 |
+
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
|
| 127 |
with gr.Row():
|
| 128 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 129 |
with gr.Accordion("Advanced_Parameters", open=False):
|
|
|
|
| 137 |
tb_indicator = gr.Textbox(label="Output", scale=8)
|
| 138 |
btn_openfolder = gr.Button('π', scale=2)
|
| 139 |
|
| 140 |
+
params = [mic_input, dd_model, dd_lang, dd_file_format, cb_translate]
|
| 141 |
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
|
| 142 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 143 |
inputs=params + advanced_params,
|
modules/faster_whisper_inference.py
CHANGED
|
@@ -13,7 +13,7 @@ import torch
|
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
from .base_interface import BaseInterface
|
| 16 |
-
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
| 17 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 18 |
|
| 19 |
|
|
@@ -34,7 +34,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 34 |
fileobjs: list,
|
| 35 |
model_size: str,
|
| 36 |
lang: str,
|
| 37 |
-
|
| 38 |
istranslate: bool,
|
| 39 |
add_timestamp: bool,
|
| 40 |
beam_size: int,
|
|
@@ -54,8 +54,8 @@ class FasterWhisperInference(BaseInterface):
|
|
| 54 |
Whisper model size from gr.Dropdown()
|
| 55 |
lang: str
|
| 56 |
Source language of the file to transcribe from gr.Dropdown()
|
| 57 |
-
|
| 58 |
-
|
| 59 |
istranslate: bool
|
| 60 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 61 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -97,12 +97,13 @@ class FasterWhisperInference(BaseInterface):
|
|
| 97 |
|
| 98 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 99 |
file_name = safe_filename(file_name)
|
| 100 |
-
subtitle = self.
|
| 101 |
file_name=file_name,
|
| 102 |
transcribed_segments=transcribed_segments,
|
| 103 |
add_timestamp=add_timestamp,
|
| 104 |
-
|
| 105 |
)
|
|
|
|
| 106 |
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
|
| 107 |
|
| 108 |
total_result = ''
|
|
@@ -125,7 +126,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 125 |
youtubelink: str,
|
| 126 |
model_size: str,
|
| 127 |
lang: str,
|
| 128 |
-
|
| 129 |
istranslate: bool,
|
| 130 |
add_timestamp: bool,
|
| 131 |
beam_size: int,
|
|
@@ -145,8 +146,8 @@ class FasterWhisperInference(BaseInterface):
|
|
| 145 |
Whisper model size from gr.Dropdown()
|
| 146 |
lang: str
|
| 147 |
Source language of the file to transcribe from gr.Dropdown()
|
| 148 |
-
|
| 149 |
-
|
| 150 |
istranslate: bool
|
| 151 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 152 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -191,11 +192,11 @@ class FasterWhisperInference(BaseInterface):
|
|
| 191 |
progress(1, desc="Completed!")
|
| 192 |
|
| 193 |
file_name = safe_filename(yt.title)
|
| 194 |
-
subtitle = self.
|
| 195 |
file_name=file_name,
|
| 196 |
transcribed_segments=transcribed_segments,
|
| 197 |
add_timestamp=add_timestamp,
|
| 198 |
-
|
| 199 |
)
|
| 200 |
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 201 |
except Exception as e:
|
|
@@ -217,7 +218,7 @@ class FasterWhisperInference(BaseInterface):
|
|
| 217 |
micaudio: str,
|
| 218 |
model_size: str,
|
| 219 |
lang: str,
|
| 220 |
-
|
| 221 |
istranslate: bool,
|
| 222 |
beam_size: int,
|
| 223 |
log_prob_threshold: float,
|
|
@@ -236,8 +237,8 @@ class FasterWhisperInference(BaseInterface):
|
|
| 236 |
Whisper model size from gr.Dropdown()
|
| 237 |
lang: str
|
| 238 |
Source language of the file to transcribe from gr.Dropdown()
|
| 239 |
-
|
| 240 |
-
|
| 241 |
istranslate: bool
|
| 242 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 243 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -276,11 +277,11 @@ class FasterWhisperInference(BaseInterface):
|
|
| 276 |
)
|
| 277 |
progress(1, desc="Completed!")
|
| 278 |
|
| 279 |
-
subtitle = self.
|
| 280 |
file_name="Mic",
|
| 281 |
transcribed_segments=transcribed_segments,
|
| 282 |
add_timestamp=True,
|
| 283 |
-
|
| 284 |
)
|
| 285 |
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 286 |
except Exception as e:
|
|
@@ -378,11 +379,11 @@ class FasterWhisperInference(BaseInterface):
|
|
| 378 |
)
|
| 379 |
|
| 380 |
@staticmethod
|
| 381 |
-
def
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
"""
|
| 387 |
This method writes subtitle file and returns str to gr.Textbox
|
| 388 |
"""
|
|
@@ -392,13 +393,18 @@ class FasterWhisperInference(BaseInterface):
|
|
| 392 |
else:
|
| 393 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 394 |
|
| 395 |
-
if
|
| 396 |
-
|
| 397 |
-
write_file(
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 402 |
|
| 403 |
@staticmethod
|
| 404 |
def format_time(elapsed_time: float) -> str:
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
|
| 15 |
from .base_interface import BaseInterface
|
| 16 |
+
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 17 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 18 |
|
| 19 |
|
|
|
|
| 34 |
fileobjs: list,
|
| 35 |
model_size: str,
|
| 36 |
lang: str,
|
| 37 |
+
file_format: str,
|
| 38 |
istranslate: bool,
|
| 39 |
add_timestamp: bool,
|
| 40 |
beam_size: int,
|
|
|
|
| 54 |
Whisper model size from gr.Dropdown()
|
| 55 |
lang: str
|
| 56 |
Source language of the file to transcribe from gr.Dropdown()
|
| 57 |
+
file_format: str
|
| 58 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 59 |
istranslate: bool
|
| 60 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 61 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 97 |
|
| 98 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 99 |
file_name = safe_filename(file_name)
|
| 100 |
+
subtitle = self.generate_and_write_file(
|
| 101 |
file_name=file_name,
|
| 102 |
transcribed_segments=transcribed_segments,
|
| 103 |
add_timestamp=add_timestamp,
|
| 104 |
+
file_format=file_format
|
| 105 |
)
|
| 106 |
+
print(f"{subtitle}")
|
| 107 |
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
|
| 108 |
|
| 109 |
total_result = ''
|
|
|
|
| 126 |
youtubelink: str,
|
| 127 |
model_size: str,
|
| 128 |
lang: str,
|
| 129 |
+
file_format: str,
|
| 130 |
istranslate: bool,
|
| 131 |
add_timestamp: bool,
|
| 132 |
beam_size: int,
|
|
|
|
| 146 |
Whisper model size from gr.Dropdown()
|
| 147 |
lang: str
|
| 148 |
Source language of the file to transcribe from gr.Dropdown()
|
| 149 |
+
file_format: str
|
| 150 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 151 |
istranslate: bool
|
| 152 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 153 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 192 |
progress(1, desc="Completed!")
|
| 193 |
|
| 194 |
file_name = safe_filename(yt.title)
|
| 195 |
+
subtitle = self.generate_and_write_file(
|
| 196 |
file_name=file_name,
|
| 197 |
transcribed_segments=transcribed_segments,
|
| 198 |
add_timestamp=add_timestamp,
|
| 199 |
+
file_format=file_format
|
| 200 |
)
|
| 201 |
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 202 |
except Exception as e:
|
|
|
|
| 218 |
micaudio: str,
|
| 219 |
model_size: str,
|
| 220 |
lang: str,
|
| 221 |
+
file_format: str,
|
| 222 |
istranslate: bool,
|
| 223 |
beam_size: int,
|
| 224 |
log_prob_threshold: float,
|
|
|
|
| 237 |
Whisper model size from gr.Dropdown()
|
| 238 |
lang: str
|
| 239 |
Source language of the file to transcribe from gr.Dropdown()
|
| 240 |
+
file_format: str
|
| 241 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 242 |
istranslate: bool
|
| 243 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 244 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 277 |
)
|
| 278 |
progress(1, desc="Completed!")
|
| 279 |
|
| 280 |
+
subtitle = self.generate_and_write_file(
|
| 281 |
file_name="Mic",
|
| 282 |
transcribed_segments=transcribed_segments,
|
| 283 |
add_timestamp=True,
|
| 284 |
+
file_format=file_format
|
| 285 |
)
|
| 286 |
return f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
| 287 |
except Exception as e:
|
|
|
|
| 379 |
)
|
| 380 |
|
| 381 |
@staticmethod
|
| 382 |
+
def generate_and_write_file(file_name: str,
|
| 383 |
+
transcribed_segments: list,
|
| 384 |
+
add_timestamp: bool,
|
| 385 |
+
file_format: str,
|
| 386 |
+
) -> str:
|
| 387 |
"""
|
| 388 |
This method writes subtitle file and returns str to gr.Textbox
|
| 389 |
"""
|
|
|
|
| 393 |
else:
|
| 394 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 395 |
|
| 396 |
+
if file_format == "SRT":
|
| 397 |
+
content = get_srt(transcribed_segments)
|
| 398 |
+
write_file(content, f"{output_path}.srt")
|
| 399 |
+
|
| 400 |
+
elif file_format == "WebVTT":
|
| 401 |
+
content = get_vtt(transcribed_segments)
|
| 402 |
+
write_file(content, f"{output_path}.vtt")
|
| 403 |
+
|
| 404 |
+
elif file_format == "txt":
|
| 405 |
+
content = get_txt(transcribed_segments)
|
| 406 |
+
write_file(content, f"{output_path}.txt")
|
| 407 |
+
return content
|
| 408 |
|
| 409 |
@staticmethod
|
| 410 |
def format_time(elapsed_time: float) -> str:
|
modules/subtitle_manager.py
CHANGED
|
@@ -44,6 +44,15 @@ def get_vtt(segments):
|
|
| 44 |
return output
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def parse_srt(file_path):
|
| 48 |
"""Reads SRT file and returns as dict"""
|
| 49 |
with open(file_path, 'r', encoding='utf-8') as file:
|
|
|
|
| 44 |
return output
|
| 45 |
|
| 46 |
|
| 47 |
+
def get_txt(segments):
|
| 48 |
+
output = ""
|
| 49 |
+
for i, segment in enumerate(segments):
|
| 50 |
+
if segment['text'].startswith(' '):
|
| 51 |
+
segment['text'] = segment['text'][1:]
|
| 52 |
+
output += f"{segment['text']}\n"
|
| 53 |
+
return output
|
| 54 |
+
|
| 55 |
+
|
| 56 |
def parse_srt(file_path):
|
| 57 |
"""Reads SRT file and returns as dict"""
|
| 58 |
with open(file_path, 'r', encoding='utf-8') as file:
|
modules/whisper_Inference.py
CHANGED
|
@@ -8,7 +8,7 @@ from datetime import datetime
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from .base_interface import BaseInterface
|
| 11 |
-
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
|
| 12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 13 |
|
| 14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
|
@@ -30,7 +30,7 @@ class WhisperInference(BaseInterface):
|
|
| 30 |
fileobjs: list,
|
| 31 |
model_size: str,
|
| 32 |
lang: str,
|
| 33 |
-
|
| 34 |
istranslate: bool,
|
| 35 |
add_timestamp: bool,
|
| 36 |
beam_size: int,
|
|
@@ -49,8 +49,8 @@ class WhisperInference(BaseInterface):
|
|
| 49 |
Whisper model size from gr.Dropdown()
|
| 50 |
lang: str
|
| 51 |
Source language of the file to transcribe from gr.Dropdown()
|
| 52 |
-
|
| 53 |
-
|
| 54 |
istranslate: bool
|
| 55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -93,11 +93,11 @@ class WhisperInference(BaseInterface):
|
|
| 93 |
|
| 94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 95 |
file_name = safe_filename(file_name)
|
| 96 |
-
subtitle = self.
|
| 97 |
file_name=file_name,
|
| 98 |
transcribed_segments=result,
|
| 99 |
add_timestamp=add_timestamp,
|
| 100 |
-
|
| 101 |
)
|
| 102 |
|
| 103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
@@ -122,7 +122,7 @@ class WhisperInference(BaseInterface):
|
|
| 122 |
youtubelink: str,
|
| 123 |
model_size: str,
|
| 124 |
lang: str,
|
| 125 |
-
|
| 126 |
istranslate: bool,
|
| 127 |
add_timestamp: bool,
|
| 128 |
beam_size: int,
|
|
@@ -141,8 +141,8 @@ class WhisperInference(BaseInterface):
|
|
| 141 |
Whisper model size from gr.Dropdown()
|
| 142 |
lang: str
|
| 143 |
Source language of the file to transcribe from gr.Dropdown()
|
| 144 |
-
|
| 145 |
-
|
| 146 |
istranslate: bool
|
| 147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -181,11 +181,11 @@ class WhisperInference(BaseInterface):
|
|
| 181 |
progress(1, desc="Completed!")
|
| 182 |
|
| 183 |
file_name = safe_filename(yt.title)
|
| 184 |
-
subtitle = self.
|
| 185 |
file_name=file_name,
|
| 186 |
transcribed_segments=result,
|
| 187 |
add_timestamp=add_timestamp,
|
| 188 |
-
|
| 189 |
)
|
| 190 |
|
| 191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
@@ -209,7 +209,7 @@ class WhisperInference(BaseInterface):
|
|
| 209 |
micaudio: str,
|
| 210 |
model_size: str,
|
| 211 |
lang: str,
|
| 212 |
-
|
| 213 |
istranslate: bool,
|
| 214 |
beam_size: int,
|
| 215 |
log_prob_threshold: float,
|
|
@@ -227,8 +227,8 @@ class WhisperInference(BaseInterface):
|
|
| 227 |
Whisper model size from gr.Dropdown()
|
| 228 |
lang: str
|
| 229 |
Source language of the file to transcribe from gr.Dropdown()
|
| 230 |
-
|
| 231 |
-
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
|
| 232 |
istranslate: bool
|
| 233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
@@ -261,11 +261,11 @@ class WhisperInference(BaseInterface):
|
|
| 261 |
progress=progress)
|
| 262 |
progress(1, desc="Completed!")
|
| 263 |
|
| 264 |
-
subtitle = self.
|
| 265 |
file_name="Mic",
|
| 266 |
transcribed_segments=result,
|
| 267 |
add_timestamp=True,
|
| 268 |
-
|
| 269 |
)
|
| 270 |
|
| 271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
@@ -361,11 +361,11 @@ class WhisperInference(BaseInterface):
|
|
| 361 |
)
|
| 362 |
|
| 363 |
@staticmethod
|
| 364 |
-
def
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
"""
|
| 370 |
This method writes subtitle file and returns str to gr.Textbox
|
| 371 |
"""
|
|
@@ -375,13 +375,18 @@ class WhisperInference(BaseInterface):
|
|
| 375 |
else:
|
| 376 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 377 |
|
| 378 |
-
if
|
| 379 |
-
|
| 380 |
-
write_file(
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
|
| 386 |
@staticmethod
|
| 387 |
def format_time(elapsed_time: float) -> str:
|
|
|
|
| 8 |
import torch
|
| 9 |
|
| 10 |
from .base_interface import BaseInterface
|
| 11 |
+
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
|
| 12 |
from modules.youtube_manager import get_ytdata, get_ytaudio
|
| 13 |
|
| 14 |
DEFAULT_MODEL_SIZE = "large-v2"
|
|
|
|
| 30 |
fileobjs: list,
|
| 31 |
model_size: str,
|
| 32 |
lang: str,
|
| 33 |
+
file_format: str,
|
| 34 |
istranslate: bool,
|
| 35 |
add_timestamp: bool,
|
| 36 |
beam_size: int,
|
|
|
|
| 49 |
Whisper model size from gr.Dropdown()
|
| 50 |
lang: str
|
| 51 |
Source language of the file to transcribe from gr.Dropdown()
|
| 52 |
+
file_format: str
|
| 53 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 54 |
istranslate: bool
|
| 55 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 56 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 93 |
|
| 94 |
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
| 95 |
file_name = safe_filename(file_name)
|
| 96 |
+
subtitle = self.generate_and_write_file(
|
| 97 |
file_name=file_name,
|
| 98 |
transcribed_segments=result,
|
| 99 |
add_timestamp=add_timestamp,
|
| 100 |
+
file_format=file_format
|
| 101 |
)
|
| 102 |
|
| 103 |
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
|
|
|
| 122 |
youtubelink: str,
|
| 123 |
model_size: str,
|
| 124 |
lang: str,
|
| 125 |
+
file_format: str,
|
| 126 |
istranslate: bool,
|
| 127 |
add_timestamp: bool,
|
| 128 |
beam_size: int,
|
|
|
|
| 141 |
Whisper model size from gr.Dropdown()
|
| 142 |
lang: str
|
| 143 |
Source language of the file to transcribe from gr.Dropdown()
|
| 144 |
+
file_format: str
|
| 145 |
+
File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 146 |
istranslate: bool
|
| 147 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 148 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 181 |
progress(1, desc="Completed!")
|
| 182 |
|
| 183 |
file_name = safe_filename(yt.title)
|
| 184 |
+
subtitle = self.generate_and_write_file(
|
| 185 |
file_name=file_name,
|
| 186 |
transcribed_segments=result,
|
| 187 |
add_timestamp=add_timestamp,
|
| 188 |
+
file_format=file_format
|
| 189 |
)
|
| 190 |
|
| 191 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
| 209 |
micaudio: str,
|
| 210 |
model_size: str,
|
| 211 |
lang: str,
|
| 212 |
+
file_format: str,
|
| 213 |
istranslate: bool,
|
| 214 |
beam_size: int,
|
| 215 |
log_prob_threshold: float,
|
|
|
|
| 227 |
Whisper model size from gr.Dropdown()
|
| 228 |
lang: str
|
| 229 |
Source language of the file to transcribe from gr.Dropdown()
|
| 230 |
+
file_format: str
|
| 231 |
+
Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
|
| 232 |
istranslate: bool
|
| 233 |
Boolean value from gr.Checkbox() that determines whether to translate to English.
|
| 234 |
It's Whisper's feature to translate speech from another language directly into English end-to-end.
|
|
|
|
| 261 |
progress=progress)
|
| 262 |
progress(1, desc="Completed!")
|
| 263 |
|
| 264 |
+
subtitle = self.generate_and_write_file(
|
| 265 |
file_name="Mic",
|
| 266 |
transcribed_segments=result,
|
| 267 |
add_timestamp=True,
|
| 268 |
+
file_format=file_format
|
| 269 |
)
|
| 270 |
|
| 271 |
return f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
|
|
|
| 361 |
)
|
| 362 |
|
| 363 |
@staticmethod
|
| 364 |
+
def generate_and_write_file(file_name: str,
|
| 365 |
+
transcribed_segments: list,
|
| 366 |
+
add_timestamp: bool,
|
| 367 |
+
file_format: str,
|
| 368 |
+
) -> str:
|
| 369 |
"""
|
| 370 |
This method writes subtitle file and returns str to gr.Textbox
|
| 371 |
"""
|
|
|
|
| 375 |
else:
|
| 376 |
output_path = os.path.join("outputs", f"{file_name}")
|
| 377 |
|
| 378 |
+
if file_format == "SRT":
|
| 379 |
+
content = get_srt(transcribed_segments)
|
| 380 |
+
write_file(content, f"{output_path}.srt")
|
| 381 |
+
|
| 382 |
+
elif file_format == "WebVTT":
|
| 383 |
+
content = get_vtt(transcribed_segments)
|
| 384 |
+
write_file(content, f"{output_path}.vtt")
|
| 385 |
+
|
| 386 |
+
elif file_format == "txt":
|
| 387 |
+
content = get_txt(transcribed_segments)
|
| 388 |
+
write_file(content, f"{output_path}.vtt")
|
| 389 |
+
return content
|
| 390 |
|
| 391 |
@staticmethod
|
| 392 |
def format_time(elapsed_time: float) -> str:
|