Spaces:
Running
Running
jhj0517
commited on
Commit
·
16a0393
1
Parent(s):
7386da0
add `restore_speech_timestamps()`
Browse files- modules/vad/silero_vad.py +25 -4
modules/vad/silero_vad.py
CHANGED
|
@@ -2,9 +2,10 @@
|
|
| 2 |
|
| 3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 4 |
import numpy as np
|
| 5 |
-
from typing import BinaryIO, Union, List, Optional
|
| 6 |
import warnings
|
| 7 |
import faster_whisper
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
|
| 10 |
|
|
@@ -17,7 +18,8 @@ class SileroVAD:
|
|
| 17 |
def run(self,
|
| 18 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 19 |
vad_parameters: VadOptions,
|
| 20 |
-
progress: gr.Progress = gr.Progress()
|
|
|
|
| 21 |
"""
|
| 22 |
Run VAD
|
| 23 |
|
|
@@ -32,8 +34,10 @@ class SileroVAD:
|
|
| 32 |
|
| 33 |
Returns
|
| 34 |
----------
|
| 35 |
-
|
| 36 |
Pre-processed audio with VAD
|
|
|
|
|
|
|
| 37 |
"""
|
| 38 |
|
| 39 |
sampling_rate = self.sampling_rate
|
|
@@ -56,7 +60,7 @@ class SileroVAD:
|
|
| 56 |
audio = self.collect_chunks(audio, speech_chunks)
|
| 57 |
duration_after_vad = audio.shape[0] / sampling_rate
|
| 58 |
|
| 59 |
-
return audio
|
| 60 |
|
| 61 |
def get_speech_timestamps(
|
| 62 |
self,
|
|
@@ -241,3 +245,20 @@ class SileroVAD:
|
|
| 241 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 242 |
)
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
from faster_whisper.vad import VadOptions, get_vad_model
|
| 4 |
import numpy as np
|
| 5 |
+
from typing import BinaryIO, Union, List, Optional, Tuple
|
| 6 |
import warnings
|
| 7 |
import faster_whisper
|
| 8 |
+
from faster_whisper.transcribe import SpeechTimestampsMap, Segment
|
| 9 |
import gradio as gr
|
| 10 |
|
| 11 |
|
|
|
|
| 18 |
def run(self,
|
| 19 |
audio: Union[str, BinaryIO, np.ndarray],
|
| 20 |
vad_parameters: VadOptions,
|
| 21 |
+
progress: gr.Progress = gr.Progress()
|
| 22 |
+
) -> Tuple[np.ndarray, List[dict]]:
|
| 23 |
"""
|
| 24 |
Run VAD
|
| 25 |
|
|
|
|
| 34 |
|
| 35 |
Returns
|
| 36 |
----------
|
| 37 |
+
np.ndarray
|
| 38 |
Pre-processed audio with VAD
|
| 39 |
+
List[dict]
|
| 40 |
+
Chunks of speeches to be used to restore the timestamps later
|
| 41 |
"""
|
| 42 |
|
| 43 |
sampling_rate = self.sampling_rate
|
|
|
|
| 60 |
audio = self.collect_chunks(audio, speech_chunks)
|
| 61 |
duration_after_vad = audio.shape[0] / sampling_rate
|
| 62 |
|
| 63 |
+
return audio, speech_chunks
|
| 64 |
|
| 65 |
def get_speech_timestamps(
|
| 66 |
self,
|
|
|
|
| 245 |
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
| 246 |
)
|
| 247 |
|
| 248 |
+
def restore_speech_timestamps(
|
| 249 |
+
self,
|
| 250 |
+
segments: List[dict],
|
| 251 |
+
speech_chunks: List[dict],
|
| 252 |
+
sampling_rate: Optional[int] = None,
|
| 253 |
+
) -> List[dict]:
|
| 254 |
+
if sampling_rate is None:
|
| 255 |
+
sampling_rate = self.sampling_rate
|
| 256 |
+
|
| 257 |
+
ts_map = SpeechTimestampsMap(speech_chunks, sampling_rate)
|
| 258 |
+
|
| 259 |
+
for segment in segments:
|
| 260 |
+
segment["start"] = ts_map.get_original_time(segment["start"])
|
| 261 |
+
segment["end"] = ts_map.get_original_time(segment["end"])
|
| 262 |
+
|
| 263 |
+
return segments
|
| 264 |
+
|