File size: 11,221 Bytes
ff5aa27
 
 
 
 
56d7f1f
 
 
 
1e64bcc
dfe2ca6
1e64bcc
64e6134
ff5aa27
64e6134
94e3a48
 
42af183
 
ff5aa27
56d7f1f
 
 
 
 
 
167d34d
ff5aa27
56d7f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167d34d
 
56d7f1f
 
 
 
ff5aa27
1e64bcc
 
f9bd9ba
 
 
 
6c0624c
f9bd9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167d34d
 
 
 
f9bd9ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e6134
f9bd9ba
64e6134
 
ff5aa27
56d7f1f
 
 
 
 
 
167d34d
f9bd9ba
56d7f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167d34d
 
56d7f1f
 
 
 
f9bd9ba
 
8d692ce
f9bd9ba
 
 
 
6c0624c
1e64bcc
f9bd9ba
 
 
 
 
 
8d692ce
1e64bcc
8d692ce
1e64bcc
 
 
 
 
8d692ce
1e64bcc
8d692ce
f9bd9ba
8d692ce
167d34d
 
 
 
8d692ce
 
 
b491afe
8d692ce
 
b491afe
8d692ce
f9bd9ba
 
64e6134
f9bd9ba
 
 
64e6134
 
1e64bcc
56d7f1f
 
 
 
 
 
1e64bcc
56d7f1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff5aa27
1e64bcc
 
f9bd9ba
 
 
 
6c0624c
ff5aa27
f9bd9ba
 
ff5aa27
f9bd9ba
ff5aa27
f9bd9ba
 
 
 
 
 
 
ff5aa27
f9bd9ba
ff5aa27
f9bd9ba
fec84a3
ff5aa27
f9bd9ba
 
 
 
 
 
1e64bcc
f9bd9ba
 
64e6134
f9bd9ba
64e6134
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import whisper
import gradio as gr
import os
from datetime import datetime

from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio

DEFAULT_MODEL_SIZE = "large-v2"


class WhisperInference(BaseInterface):
    def __init__(self):
        super().__init__()
        self.current_model_size = None
        self.model = None
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))

    def transcribe_file(self,
                        fileobjs: list,
                        model_size: str,
                        lang: str,
                        subformat: str,
                        istranslate: bool,
                        add_timestamp: bool,
                        progress=gr.Progress()):
        """
        Write subtitle file from Files

        Parameters
        ----------
        fileobjs: list
            List of files to transcribe from gr.Files()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
            I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
        """
        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        try:
            if model_size != self.current_model_size or self.model is None:
                progress(0, desc="Initializing Model..")
                self.current_model_size = model_size
                self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))

            if lang == "Automatic Detection":
                lang = None

            progress(0, desc="Loading Audio..")

            files_info = {}
            for fileobj in fileobjs:

                audio = whisper.load_audio(fileobj.name)

                translatable_model = ["large", "large-v1", "large-v2"]
                if istranslate and self.current_model_size in translatable_model:
                    result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
                                                   progress_callback=progress_callback)
                else:
                    result = self.model.transcribe(audio=audio, language=lang, verbose=False,
                                                   progress_callback=progress_callback)

                progress(1, desc="Completed!")

                file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
                file_name = safe_filename(file_name)
                timestamp = datetime.now().strftime("%m%d%H%M%S")
                if add_timestamp:
                    output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
                else:
                    output_path = os.path.join("outputs", f"{file_name}")

                if subformat == "SRT":
                    subtitle = get_srt(result["segments"])
                    write_file(subtitle, f"{output_path}.srt")
                elif subformat == "WebVTT":
                    subtitle = get_vtt(result["segments"])
                    write_file(subtitle, f"{output_path}.vtt")

                files_info[file_name] = subtitle

            total_result = ''
            for file_name, subtitle in files_info.items():
                total_result += '------------------------------------\n'
                total_result += f'{file_name}\n\n'
                total_result += f'{subtitle}'

            return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
        except Exception as e:
            return f"Error: {str(e)}"
        finally:
            self.release_cuda_memory()
            self.remove_input_files([fileobj.name for fileobj in fileobjs])

    def transcribe_youtube(self,
                           youtubelink: str,
                           model_size: str,
                           lang: str,
                           subformat: str,
                           istranslate: bool,
                           add_timestamp: bool,
                           progress=gr.Progress()):
        """
        Write subtitle file from Youtube

        Parameters
        ----------
        youtubelink: str
            Link of Youtube to transcribe from gr.Textbox()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
            I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
        """
        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        try:
            if model_size != self.current_model_size or self.model is None:
                progress(0, desc="Initializing Model..")
                self.current_model_size = model_size
                self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))

            if lang == "Automatic Detection":
                lang = None

            progress(0, desc="Loading Audio from Youtube..")
            yt = get_ytdata(youtubelink)
            audio = whisper.load_audio(get_ytaudio(yt))

            translatable_model = ["large", "large-v1", "large-v2"]
            if istranslate and self.current_model_size in translatable_model:
                result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
                                               progress_callback=progress_callback)
            else:
                result = self.model.transcribe(audio=audio, language=lang, verbose=False,
                                               progress_callback=progress_callback)

            progress(1, desc="Completed!")

            file_name = safe_filename(yt.title)
            timestamp = datetime.now().strftime("%m%d%H%M%S")
            if add_timestamp:
                output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
            else:
                output_path = os.path.join("outputs", f"{file_name}")

            if subformat == "SRT":
                subtitle = get_srt(result["segments"])
                write_file(subtitle, f"{output_path}.srt")
            elif subformat == "WebVTT":
                subtitle = get_vtt(result["segments"])
                write_file(subtitle, f"{output_path}.vtt")

            return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
        except Exception as e:
            return f"Error: {str(e)}"
        finally:
            yt = get_ytdata(youtubelink)
            file_path = get_ytaudio(yt)
            self.release_cuda_memory()
            self.remove_input_files([file_path])

    def transcribe_mic(self,
                       micaudio: str,
                       model_size: str,
                       lang: str,
                       subformat: str,
                       istranslate: bool,
                       progress=gr.Progress()):
        """
        Write subtitle file from microphone

        Parameters
        ----------
        micaudio: str
            Audio file path from gr.Microphone()
        model_size: str
            Whisper model size from gr.Dropdown()
        lang: str
            Source language of the file to transcribe from gr.Dropdown()
        subformat: str
            Subtitle format to write from gr.Dropdown(). Supported format: [SRT, WebVTT]
        istranslate: bool
            Boolean value from gr.Checkbox() that determines whether to translate to English.
            It's Whisper's feature to translate speech from another language directly into English end-to-end.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
            I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
        """
        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        try:
            if model_size != self.current_model_size or self.model is None:
                progress(0, desc="Initializing Model..")
                self.current_model_size = model_size
                self.model = whisper.load_model(name=model_size, download_root=os.path.join("models", "Whisper"))

            if lang == "Automatic Detection":
                lang = None

            progress(0, desc="Loading Audio..")

            translatable_model = ["large", "large-v1", "large-v2"]
            if istranslate and self.current_model_size in translatable_model:
                result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
                                               progress_callback=progress_callback)
            else:
                result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
                                               progress_callback=progress_callback)

            progress(1, desc="Completed!")

            timestamp = datetime.now().strftime("%m%d%H%M%S")
            output_path = os.path.join("outputs", f"Mic-{timestamp}")

            if subformat == "SRT":
                subtitle = get_srt(result["segments"])
                write_file(subtitle, f"{output_path}.srt")
            elif subformat == "WebVTT":
                subtitle = get_vtt(result["segments"])
                write_file(subtitle, f"{output_path}.vtt")

            return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
        except Exception as e:
            return f"Error: {str(e)}"
        finally:
            self.release_cuda_memory()
            self.remove_input_files([micaudio])