Spaces:
Running
Running
File size: 8,883 Bytes
ff5aa27 56d7f1f 8762e3a 43820de ff5aa27 036b97d ff5aa27 56d7f1f a0164a7 56d7f1f ff5aa27 56d7f1f ff5aa27 56d7f1f 43820de 56d7f1f 43820de 56d7f1f 43820de 56d7f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import os
import argparse
from modules.whisper_Inference import WhisperInference
from modules.nllb_inference import NLLBInference
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS)
self.whisper_inf = WhisperInference()
self.nllb_inf = NLLBInference()
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2"]
if model_size not in translatable_model:
return gr.Checkbox.update(visible=False, value=False, interactive=False)
else:
return gr.Checkbox.update(visible=True, value=False, label="Translate to English?", interactive=True)
def launch(self):
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="file", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=[input_file, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(choices=["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=[tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=[mic_input, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="file", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("NLLB"): # sub tab1
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value=self.nllb_inf.default_model_size,
choices=self.nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
choices=self.nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language",
choices=self.nllb_inf.available_target_langs)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=8)
btn_openfolder = gr.Button('π', scale=2)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang],
outputs=[tb_indicator])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
if self.args.share:
self.app.queue(api_open=False).launch(share=True)
else:
self.app.queue(api_open=False).launch()
# Create the parser
parser = argparse.ArgumentParser()
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True,
help='Share value')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|