jfataphd commited on
Commit
f1c4d10
·
1 Parent(s): 4176ca4

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -59
app.py DELETED
@@ -1,59 +0,0 @@
1
- import streamlit as st
2
- import time
3
- import json
4
- from gensim.models import Word2Vec
5
- import pandas as pd
6
-
7
-
8
- query = st.text_input("Enter a word")
9
- # query = input ("Enter your keyword(s):")
10
-
11
- if query:
12
- model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model!
13
- words = list(model.wv.key_to_index)
14
- X = model.wv[model.wv.key_to_index]
15
- model2 = model.wv[query]
16
- df = pd.DataFrame(X)
17
-
18
-
19
- # def findRelationships(query, df):
20
- table = model.wv.most_similar_cosmul(query, topn=10000)
21
- table = (pd.DataFrame(table))
22
- table.index.name = 'Rank'
23
- table.columns = ['Word', 'SIMILARITY']
24
- print()
25
- print("Similarity to " + str(query))
26
- pd.set_option('display.max_rows', None)
27
- print(table.head(100))
28
- table.head(10).to_csv("clotting_sim1.csv", index=True)
29
- st.header(f"Similar Words to {query}")
30
- st.write(table.head(50))
31
- #
32
- print()
33
- print("Human genes similar to " + str(query))
34
- df1 = table
35
- df2 = pd.read_csv('Human_Genes.csv')
36
- m = df1.Word.isin(df2.symbol)
37
- df1 = df1[m]
38
- df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
39
- print(df1.head(10))
40
- print()
41
- df1.head(10).to_csv("clotting_sim2.csv", index=True, header=False)
42
- time.sleep(2)
43
- st.header(f"Similar Genes to {query}")
44
- st.write(df1.head(50))
45
-
46
-
47
- # findRelationships(query, df)
48
-
49
-
50
-
51
-
52
-
53
-
54
-
55
- # model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
56
- # similar_words = model.most_similar(word)
57
- # output = json.dumps({"word": word, "similar_words": similar_words})
58
- # st.write(output)
59
-