Spaces:
Running
Running
Upload word2vec_app.py
Browse files- word2vec_app.py +71 -0
word2vec_app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import time
|
| 3 |
+
import json
|
| 4 |
+
from gensim.models import Word2Vec
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
# Define the HTML and CSS styles
|
| 8 |
+
html_temp = """
|
| 9 |
+
<div style="background-color:black;padding:10px">
|
| 10 |
+
<h1 style="color:white;text-align:center;">My Streamlit App with HTML and CSS</h1>
|
| 11 |
+
</div>
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
# Display the HTML and CSS styles
|
| 15 |
+
st.markdown(html_temp, unsafe_allow_html=True)
|
| 16 |
+
|
| 17 |
+
# Add some text to the app
|
| 18 |
+
st.write("This is my Streamlit app with HTML and CSS formatting.")
|
| 19 |
+
|
| 20 |
+
query = st.text_input("Enter a word")
|
| 21 |
+
# query = input ("Enter your keyword(s):")
|
| 22 |
+
|
| 23 |
+
if query:
|
| 24 |
+
model = Word2Vec.load("pubmed_model_clotting") # you can continue training with the loaded model!
|
| 25 |
+
words = list(model.wv.key_to_index)
|
| 26 |
+
X = model.wv[model.wv.key_to_index]
|
| 27 |
+
model2 = model.wv[query]
|
| 28 |
+
df = pd.DataFrame(X)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# def findRelationships(query, df):
|
| 32 |
+
table = model.wv.most_similar_cosmul(query, topn=10000)
|
| 33 |
+
table = (pd.DataFrame(table))
|
| 34 |
+
table.index.name = 'Rank'
|
| 35 |
+
table.columns = ['Word', 'SIMILARITY']
|
| 36 |
+
print()
|
| 37 |
+
print("Similarity to " + str(query))
|
| 38 |
+
pd.set_option('display.max_rows', None)
|
| 39 |
+
print(table.head(100))
|
| 40 |
+
table.head(10).to_csv("clotting_sim1.csv", index=True)
|
| 41 |
+
st.header(f"Similar Words to {query}")
|
| 42 |
+
st.write(table.head(50))
|
| 43 |
+
#
|
| 44 |
+
print()
|
| 45 |
+
print("Human genes similar to " + str(query))
|
| 46 |
+
df1 = table
|
| 47 |
+
df2 = pd.read_csv('Human Genes.csv')
|
| 48 |
+
m = df1.Word.isin(df2.symbol)
|
| 49 |
+
df1 = df1[m]
|
| 50 |
+
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
| 51 |
+
print(df1.head(10))
|
| 52 |
+
print()
|
| 53 |
+
df1.head(10).to_csv("clotting_sim2.csv", index=True, header=False)
|
| 54 |
+
time.sleep(2)
|
| 55 |
+
st.header(f"Similar Genes to {query}")
|
| 56 |
+
st.write(table.head(50))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# findRelationships(query, df)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
|
| 68 |
+
# similar_words = model.most_similar(word)
|
| 69 |
+
# output = json.dumps({"word": word, "similar_words": similar_words})
|
| 70 |
+
# st.write(output)
|
| 71 |
+
|