Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -405,6 +405,7 @@ if query:
|
|
405 |
m = df1.Word.isin(df2.symbol)
|
406 |
df1 = df1[m]
|
407 |
df1.rename(columns={'Word': 'Genes'}, inplace=True)
|
|
|
408 |
df_len = len(df1)
|
409 |
# print(len(df1))
|
410 |
|
@@ -425,7 +426,7 @@ if query:
|
|
425 |
|
426 |
df11 = df1.head(value_gene).copy()
|
427 |
|
428 |
-
df11.index = (1 / df11.index) * 10000
|
429 |
sizes = df11.index.tolist()
|
430 |
|
431 |
df11.set_index('Genes', inplace=True)
|
@@ -563,6 +564,7 @@ if query:
|
|
563 |
m = df1.Word.isin(df2.drugs)
|
564 |
df1 = df1[m]
|
565 |
df1.rename(columns={'Word': 'Drugs'}, inplace=True)
|
|
|
566 |
df_len = len(df1)
|
567 |
# print(len(df1))
|
568 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
@@ -589,7 +591,8 @@ if query:
|
|
589 |
|
590 |
df13 = df1.head(value_drug).copy()
|
591 |
|
592 |
-
df13.index = (1 / df13.index) * 10000
|
|
|
593 |
sizes = df13.index.tolist()
|
594 |
|
595 |
df13.set_index('Drugs', inplace=True)
|
@@ -723,6 +726,7 @@ if query:
|
|
723 |
m = df1.Word.isin(df2.phyto)
|
724 |
df1 = df1[m]
|
725 |
df1.rename(columns={'Word': 'Phytochemical'}, inplace=True)
|
|
|
726 |
df_len = len(df1)
|
727 |
# print(len(df1))
|
728 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
@@ -750,7 +754,7 @@ if query:
|
|
750 |
|
751 |
df15 = df1.head(value_phyto).copy()
|
752 |
|
753 |
-
df15.index = (1 / df15.index) * 10000
|
754 |
sizes = df15.index.tolist()
|
755 |
|
756 |
df15.set_index('Phytochemical', inplace=True)
|
@@ -884,6 +888,7 @@ if query:
|
|
884 |
m = df1.Word.isin(df2.compound)
|
885 |
df1 = df1[m]
|
886 |
df1.rename(columns={'Word': 'Compounds'}, inplace=True)
|
|
|
887 |
df_len = len(df1)
|
888 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
889 |
# print(df1.head(50))
|
@@ -910,7 +915,7 @@ if query:
|
|
910 |
|
911 |
df12 = df1.head(value_compound).copy()
|
912 |
|
913 |
-
df12.index = (1 / df12.index) * 10000
|
914 |
sizes = df12.index.tolist()
|
915 |
|
916 |
df12.set_index('Compounds', inplace=True)
|
|
|
405 |
m = df1.Word.isin(df2.symbol)
|
406 |
df1 = df1[m]
|
407 |
df1.rename(columns={'Word': 'Genes'}, inplace=True)
|
408 |
+
df1.reset_index(drop=True, inplace=True) # Reset the index here
|
409 |
df_len = len(df1)
|
410 |
# print(len(df1))
|
411 |
|
|
|
426 |
|
427 |
df11 = df1.head(value_gene).copy()
|
428 |
|
429 |
+
df11.index = (1 / (df11.index + 1)) * 10000 # Add 1 to the index before dividing
|
430 |
sizes = df11.index.tolist()
|
431 |
|
432 |
df11.set_index('Genes', inplace=True)
|
|
|
564 |
m = df1.Word.isin(df2.drugs)
|
565 |
df1 = df1[m]
|
566 |
df1.rename(columns={'Word': 'Drugs'}, inplace=True)
|
567 |
+
df1.reset_index(drop=True, inplace=True)
|
568 |
df_len = len(df1)
|
569 |
# print(len(df1))
|
570 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
|
|
591 |
|
592 |
df13 = df1.head(value_drug).copy()
|
593 |
|
594 |
+
df13.index = (1 / (df13.index + 1)) * 10000
|
595 |
+
|
596 |
sizes = df13.index.tolist()
|
597 |
|
598 |
df13.set_index('Drugs', inplace=True)
|
|
|
726 |
m = df1.Word.isin(df2.phyto)
|
727 |
df1 = df1[m]
|
728 |
df1.rename(columns={'Word': 'Phytochemical'}, inplace=True)
|
729 |
+
df1.reset_index(drop=True, inplace=True)
|
730 |
df_len = len(df1)
|
731 |
# print(len(df1))
|
732 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
|
|
754 |
|
755 |
df15 = df1.head(value_phyto).copy()
|
756 |
|
757 |
+
df15.index = (1 / (df15.index + 1)) * 10000
|
758 |
sizes = df15.index.tolist()
|
759 |
|
760 |
df15.set_index('Phytochemical', inplace=True)
|
|
|
888 |
m = df1.Word.isin(df2.compound)
|
889 |
df1 = df1[m]
|
890 |
df1.rename(columns={'Word': 'Compounds'}, inplace=True)
|
891 |
+
df1.reset_index(drop=True, inplace=True)
|
892 |
df_len = len(df1)
|
893 |
# df1["Human Gene"] = df1["Human Gene"].str.upper()
|
894 |
# print(df1.head(50))
|
|
|
915 |
|
916 |
df12 = df1.head(value_compound).copy()
|
917 |
|
918 |
+
df12.index = (1 / (df12.index + 1)) * 10000
|
919 |
sizes = df12.index.tolist()
|
920 |
|
921 |
df12.set_index('Compounds', inplace=True)
|