Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -91,19 +91,21 @@ if query:
|
|
91 |
table = (pd.DataFrame(table))
|
92 |
table.index.name = 'Rank'
|
93 |
table.columns = ['Word', 'SIMILARITY']
|
94 |
-
|
95 |
-
print(
|
|
|
96 |
pd.set_option('display.max_rows', None)
|
97 |
-
|
|
|
98 |
# table.head(10).to_csv("clotting_sim1.csv", index=True)
|
99 |
# short_table = table.head(50)
|
100 |
# print(table)
|
101 |
|
102 |
|
103 |
# calculate the sizes of the squares in the treemap
|
104 |
-
short_table =
|
105 |
short_table.index += 1
|
106 |
-
short_table.index = 1 / short_table.index
|
107 |
sizes = short_table.index.tolist()
|
108 |
|
109 |
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
|
@@ -118,47 +120,52 @@ if query:
|
|
118 |
# plt.legend("upper right", bbox_to_anchor=(-.2, 0))
|
119 |
fig = plt.gcf()
|
120 |
fig.patch.set_facecolor('#CCFFFF')
|
|
|
121 |
# # display the treemap in Streamlit
|
122 |
-
|
123 |
-
rank_num = list(short_table.index.tolist())
|
124 |
-
avg_size = sum(sizes) / len(short_table.index)
|
125 |
-
print(rank_num)
|
126 |
# print(sizes)
|
127 |
-
fig = px.treemap(
|
128 |
-
color_continuous_midpoint=avg_size)
|
129 |
fig.update(layout_coloraxis_showscale=False)
|
130 |
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
|
|
|
|
|
|
|
|
|
131 |
|
132 |
|
133 |
-
treemap1, treemap2 = st.columns(2)
|
134 |
-
with treemap1:
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
csv = table.head(100).to_csv().encode('utf-8')
|
141 |
-
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
|
142 |
|
|
|
|
|
|
|
143 |
# st.write(short_table)
|
144 |
#
|
145 |
|
146 |
-
print()
|
147 |
-
print("Human genes similar to " + str(query))
|
148 |
df1 = table
|
149 |
df2 = pd.read_csv('Human_Genes.csv')
|
150 |
m = df1.Word.isin(df2.symbol)
|
151 |
df1 = df1[m]
|
152 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
153 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
154 |
-
print(df1.head(50))
|
155 |
print()
|
156 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
157 |
# time.sleep(2)
|
158 |
|
159 |
|
160 |
df10 = df1.head(10)
|
161 |
-
df10.index = 1 / df10.index
|
162 |
sizes = df10.index.tolist()
|
163 |
|
164 |
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
|
@@ -174,30 +181,27 @@ if query:
|
|
174 |
fig2 = plt.gcf()
|
175 |
fig2.patch.set_facecolor('#CCFFFF')
|
176 |
#
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
rank_num = list(df10.index.tolist())
|
183 |
-
avg_size = sum(sizes) / len(df10.index)
|
184 |
-
print(rank_num)
|
185 |
-
# print(sizes)
|
186 |
-
fig = px.treemap(path=[df10.index], values=sizes, color=sizes, color_continuous_scale='greens',
|
187 |
-
color_continuous_midpoint=avg_size)
|
188 |
fig.update(layout_coloraxis_showscale=False)
|
189 |
-
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF"
|
190 |
-
fig.
|
|
|
|
|
|
|
191 |
|
192 |
|
193 |
# # display the treemap in Streamlit
|
194 |
-
with treemap2:
|
195 |
-
|
196 |
# st.pyplot(fig2)
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
mime='text/csv')
|
202 |
st.markdown("---")
|
203 |
st.subheader("Cancer-related videos")
|
|
|
91 |
table = (pd.DataFrame(table))
|
92 |
table.index.name = 'Rank'
|
93 |
table.columns = ['Word', 'SIMILARITY']
|
94 |
+
|
95 |
+
# print()
|
96 |
+
# print("Similarity to " + str(query))
|
97 |
pd.set_option('display.max_rows', None)
|
98 |
+
table2 = table.copy()
|
99 |
+
# print(table.head(50))
|
100 |
# table.head(10).to_csv("clotting_sim1.csv", index=True)
|
101 |
# short_table = table.head(50)
|
102 |
# print(table)
|
103 |
|
104 |
|
105 |
# calculate the sizes of the squares in the treemap
|
106 |
+
short_table = table2.head(10).round(2)
|
107 |
short_table.index += 1
|
108 |
+
short_table.index = (1 / short_table.index)*10
|
109 |
sizes = short_table.index.tolist()
|
110 |
|
111 |
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
|
|
|
120 |
# plt.legend("upper right", bbox_to_anchor=(-.2, 0))
|
121 |
fig = plt.gcf()
|
122 |
fig.patch.set_facecolor('#CCFFFF')
|
123 |
+
# print(table.head(10)["SIMILARITY"])
|
124 |
# # display the treemap in Streamlit
|
125 |
+
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
|
126 |
+
# rank_num = list(short_table.index.tolist())
|
127 |
+
# avg_size = sum(sizes) / len(short_table.index)
|
128 |
+
# print(rank_num)
|
129 |
# print(sizes)
|
130 |
+
fig = px.treemap(path=[short_table.index], values=sizes, hover_name=(table2.head(10)['SIMILARITY']))
|
|
|
131 |
fig.update(layout_coloraxis_showscale=False)
|
132 |
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
|
133 |
+
fig.update_annotations(visible=False)
|
134 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
135 |
+
hoverlabel_bgcolor="lightgreen", hoverlabel_bordercolor="#000000")
|
136 |
+
fig.update_layout(uniformtext=dict(minsize=15, mode='hide'), treemapcolorway=["lightgreen"])
|
137 |
|
138 |
|
139 |
+
# treemap1, treemap2 = st.columns(2)
|
140 |
+
# with treemap1:
|
141 |
+
st.subheader(f"Top 10 Words closely related to {query}")
|
142 |
+
# st.pyplot(fig)
|
143 |
+
# plt.clf()
|
144 |
+
st.plotly_chart(fig, use_container_width=True)
|
145 |
|
|
|
|
|
146 |
|
147 |
+
csv = table.head(100).to_csv().encode('utf-8')
|
148 |
+
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
|
149 |
+
st.markdown("---")
|
150 |
# st.write(short_table)
|
151 |
#
|
152 |
|
153 |
+
# print()
|
154 |
+
# print("Human genes similar to " + str(query))
|
155 |
df1 = table
|
156 |
df2 = pd.read_csv('Human_Genes.csv')
|
157 |
m = df1.Word.isin(df2.symbol)
|
158 |
df1 = df1[m]
|
159 |
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
|
160 |
df1["Human Gene"] = df1["Human Gene"].str.upper()
|
161 |
+
# print(df1.head(50))
|
162 |
print()
|
163 |
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
|
164 |
# time.sleep(2)
|
165 |
|
166 |
|
167 |
df10 = df1.head(10)
|
168 |
+
df10.index = (1 / df10.index)*10000
|
169 |
sizes = df10.index.tolist()
|
170 |
|
171 |
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
|
|
|
181 |
fig2 = plt.gcf()
|
182 |
fig2.patch.set_facecolor('#CCFFFF')
|
183 |
#
|
184 |
+
print(df10["SIMILARITY"])
|
185 |
+
# rank_num = list(df10.index.tolist())
|
186 |
+
# avg_size = sum(sizes) / len(df10.index)
|
187 |
+
df10["SIMILARITY"] = 'Similarity Score ' + df10["SIMILARITY"].round(2).astype(str)
|
188 |
+
fig = px.treemap(path=[df10.index], values=sizes, hover_name=(df10['SIMILARITY']))
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
fig.update(layout_coloraxis_showscale=False)
|
190 |
+
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
|
191 |
+
fig.update_annotations(visible=False)
|
192 |
+
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
|
193 |
+
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000")
|
194 |
+
fig.update_layout(uniformtext=dict(minsize=20, mode='hide'), treemapcolorway=["lightblue"])
|
195 |
|
196 |
|
197 |
# # display the treemap in Streamlit
|
198 |
+
# with treemap2:
|
199 |
+
st.subheader(f"Top 10 Genes closely related to {query}")
|
200 |
# st.pyplot(fig2)
|
201 |
+
st.plotly_chart(fig, use_container_width=True)
|
202 |
|
203 |
+
csv = df1.head(100).to_csv().encode('utf-8')
|
204 |
+
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
205 |
mime='text/csv')
|
206 |
st.markdown("---")
|
207 |
st.subheader("Cancer-related videos")
|