jfataphd commited on
Commit
c5c0a51
·
1 Parent(s): ff86fbf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +45 -41
app.py CHANGED
@@ -91,19 +91,21 @@ if query:
91
  table = (pd.DataFrame(table))
92
  table.index.name = 'Rank'
93
  table.columns = ['Word', 'SIMILARITY']
94
- print()
95
- print("Similarity to " + str(query))
 
96
  pd.set_option('display.max_rows', None)
97
- print(table.head(50))
 
98
  # table.head(10).to_csv("clotting_sim1.csv", index=True)
99
  # short_table = table.head(50)
100
  # print(table)
101
 
102
 
103
  # calculate the sizes of the squares in the treemap
104
- short_table = table.head(10)
105
  short_table.index += 1
106
- short_table.index = 1 / short_table.index
107
  sizes = short_table.index.tolist()
108
 
109
  cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
@@ -118,47 +120,52 @@ if query:
118
  # plt.legend("upper right", bbox_to_anchor=(-.2, 0))
119
  fig = plt.gcf()
120
  fig.patch.set_facecolor('#CCFFFF')
 
121
  # # display the treemap in Streamlit
122
-
123
- rank_num = list(short_table.index.tolist())
124
- avg_size = sum(sizes) / len(short_table.index)
125
- print(rank_num)
126
  # print(sizes)
127
- fig = px.treemap(short_table, path=[short_table.index], values=sizes, color=sizes, color_continuous_scale='greens',
128
- color_continuous_midpoint=avg_size)
129
  fig.update(layout_coloraxis_showscale=False)
130
  fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
 
 
 
 
131
 
132
 
133
- treemap1, treemap2 = st.columns(2)
134
- with treemap1:
135
- st.subheader(f"Top 10 Words closely related to {query}")
136
- # st.pyplot(fig)
137
- # plt.clf()
138
- st.plotly_chart(fig, use_container_width=True)
139
 
140
- csv = table.head(100).to_csv().encode('utf-8')
141
- st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
142
 
 
 
 
143
  # st.write(short_table)
144
  #
145
 
146
- print()
147
- print("Human genes similar to " + str(query))
148
  df1 = table
149
  df2 = pd.read_csv('Human_Genes.csv')
150
  m = df1.Word.isin(df2.symbol)
151
  df1 = df1[m]
152
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
153
  df1["Human Gene"] = df1["Human Gene"].str.upper()
154
- print(df1.head(50))
155
  print()
156
  # df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
157
  # time.sleep(2)
158
 
159
 
160
  df10 = df1.head(10)
161
- df10.index = 1 / df10.index
162
  sizes = df10.index.tolist()
163
 
164
  cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
@@ -174,30 +181,27 @@ if query:
174
  fig2 = plt.gcf()
175
  fig2.patch.set_facecolor('#CCFFFF')
176
  #
177
-
178
-
179
-
180
- # link_ref = '<a href="http://google.com" style="cursor: pointer" target="_blank" rel="noopener noreferrer">{}</a>'
181
- # df10['SIMILARITY'] = df10['SIMILARITY'].apply(lambda item: link_ref.format(item, "{}"))
182
- rank_num = list(df10.index.tolist())
183
- avg_size = sum(sizes) / len(df10.index)
184
- print(rank_num)
185
- # print(sizes)
186
- fig = px.treemap(path=[df10.index], values=sizes, color=sizes, color_continuous_scale='greens',
187
- color_continuous_midpoint=avg_size)
188
  fig.update(layout_coloraxis_showscale=False)
189
- fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", uniformtext_mode="hide", plot_bgcolor="#fff")
190
- fig.update_traces(root_color='rgba(0,0,0,0)')
 
 
 
191
 
192
 
193
  # # display the treemap in Streamlit
194
- with treemap2:
195
- st.subheader(f"Top 10 Genes closely related to {query}")
196
  # st.pyplot(fig2)
197
- st.plotly_chart(fig, use_container_width=True)
198
 
199
- csv = df1.head(100).to_csv().encode('utf-8')
200
- st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
201
  mime='text/csv')
202
  st.markdown("---")
203
  st.subheader("Cancer-related videos")
 
91
  table = (pd.DataFrame(table))
92
  table.index.name = 'Rank'
93
  table.columns = ['Word', 'SIMILARITY']
94
+
95
+ # print()
96
+ # print("Similarity to " + str(query))
97
  pd.set_option('display.max_rows', None)
98
+ table2 = table.copy()
99
+ # print(table.head(50))
100
  # table.head(10).to_csv("clotting_sim1.csv", index=True)
101
  # short_table = table.head(50)
102
  # print(table)
103
 
104
 
105
  # calculate the sizes of the squares in the treemap
106
+ short_table = table2.head(10).round(2)
107
  short_table.index += 1
108
+ short_table.index = (1 / short_table.index)*10
109
  sizes = short_table.index.tolist()
110
 
111
  cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
 
120
  # plt.legend("upper right", bbox_to_anchor=(-.2, 0))
121
  fig = plt.gcf()
122
  fig.patch.set_facecolor('#CCFFFF')
123
+ # print(table.head(10)["SIMILARITY"])
124
  # # display the treemap in Streamlit
125
+ table2["SIMILARITY"] = 'Similarity Score ' + table2.head(10)["SIMILARITY"].round(2).astype(str)
126
+ # rank_num = list(short_table.index.tolist())
127
+ # avg_size = sum(sizes) / len(short_table.index)
128
+ # print(rank_num)
129
  # print(sizes)
130
+ fig = px.treemap(path=[short_table.index], values=sizes, hover_name=(table2.head(10)['SIMILARITY']))
 
131
  fig.update(layout_coloraxis_showscale=False)
132
  fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
133
+ fig.update_annotations(visible=False)
134
+ fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
135
+ hoverlabel_bgcolor="lightgreen", hoverlabel_bordercolor="#000000")
136
+ fig.update_layout(uniformtext=dict(minsize=15, mode='hide'), treemapcolorway=["lightgreen"])
137
 
138
 
139
+ # treemap1, treemap2 = st.columns(2)
140
+ # with treemap1:
141
+ st.subheader(f"Top 10 Words closely related to {query}")
142
+ # st.pyplot(fig)
143
+ # plt.clf()
144
+ st.plotly_chart(fig, use_container_width=True)
145
 
 
 
146
 
147
+ csv = table.head(100).to_csv().encode('utf-8')
148
+ st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
149
+ st.markdown("---")
150
  # st.write(short_table)
151
  #
152
 
153
+ # print()
154
+ # print("Human genes similar to " + str(query))
155
  df1 = table
156
  df2 = pd.read_csv('Human_Genes.csv')
157
  m = df1.Word.isin(df2.symbol)
158
  df1 = df1[m]
159
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
160
  df1["Human Gene"] = df1["Human Gene"].str.upper()
161
+ # print(df1.head(50))
162
  print()
163
  # df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
164
  # time.sleep(2)
165
 
166
 
167
  df10 = df1.head(10)
168
+ df10.index = (1 / df10.index)*10000
169
  sizes = df10.index.tolist()
170
 
171
  cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
 
181
  fig2 = plt.gcf()
182
  fig2.patch.set_facecolor('#CCFFFF')
183
  #
184
+ print(df10["SIMILARITY"])
185
+ # rank_num = list(df10.index.tolist())
186
+ # avg_size = sum(sizes) / len(df10.index)
187
+ df10["SIMILARITY"] = 'Similarity Score ' + df10["SIMILARITY"].round(2).astype(str)
188
+ fig = px.treemap(path=[df10.index], values=sizes, hover_name=(df10['SIMILARITY']))
 
 
 
 
 
 
189
  fig.update(layout_coloraxis_showscale=False)
190
+ fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF")
191
+ fig.update_annotations(visible=False)
192
+ fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
193
+ hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000")
194
+ fig.update_layout(uniformtext=dict(minsize=20, mode='hide'), treemapcolorway=["lightblue"])
195
 
196
 
197
  # # display the treemap in Streamlit
198
+ # with treemap2:
199
+ st.subheader(f"Top 10 Genes closely related to {query}")
200
  # st.pyplot(fig2)
201
+ st.plotly_chart(fig, use_container_width=True)
202
 
203
+ csv = df1.head(100).to_csv().encode('utf-8')
204
+ st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
205
  mime='text/csv')
206
  st.markdown("---")
207
  st.subheader("Cancer-related videos")