Spaces:
Sleeping
Sleeping
File size: 7,404 Bytes
1699569 e5a12b8 62faff0 2267bcd 1699569 c6e3011 62faff0 c6e3011 1699569 62faff0 f21967a a6d026f f192d73 62faff0 3559da9 f192d73 afb8bf9 62faff0 3559da9 afb8bf9 a6d026f f21967a 2bba935 90c2875 e48b5b5 90c2875 e48b5b5 90c2875 e48b5b5 1699569 c6e3011 e48b5b5 c6e3011 62faff0 2bba935 b2912c4 62faff0 e5a12b8 1699569 e48b5b5 2267bcd c6e3011 62faff0 e48b5b5 f21967a e48b5b5 f21967a 1699569 e5a12b8 f658f80 e5a12b8 82bee27 e5a12b8 50cfb9e e5a12b8 f21967a e5a12b8 62faff0 e5a12b8 96f1aee e48b5b5 f658f80 e5a12b8 1699569 4b2cc15 1699569 4b2cc15 1699569 e5a12b8 1699569 f658f80 e5a12b8 82bee27 e5a12b8 f658f80 f21967a f658f80 e5a12b8 b1a4aa9 f21967a e5a12b8 62faff0 e5a12b8 96f1aee c6e3011 62faff0 fb7bdf2 62faff0 fb7bdf2 62faff0 fb7bdf2 2267bcd fb7bdf2 2267bcd fb7bdf2 2267bcd fb7bdf2 2267bcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import streamlit as st
import time
import json
from gensim.models import Word2Vec
import pandas as pd
import matplotlib.pyplot as plt
import squarify
import numpy as np
import re
import urllib.request
import random
st.set_page_config(
page_title="FATA4 Science",
page_icon=":microscope:",
layout="wide",
initial_sidebar_state="auto",
menu_items={
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
}
)
# Define the HTML and CSS styles
st.markdown("""
<style>
[data-testid=stSidebar] {
background-color: #99CCFF;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
body {
background-color: #CCFFFF;
# color: #ffffff;
}
.stApp {
background-color: #CCFFFF;
# color: #ffffff;
}
</style>
""", unsafe_allow_html=True)
opt=st.sidebar.radio("Select a PubMed Corpus", options=('Clotting corpus', 'Neuroblastoma corpus'))
if opt == "Clotting corpus":
model_used = ("pubmed_model_clotting")
num_abstracts = 45493
database_name = "Clotting"
if opt == "Neuroblastoma corpus":
model_used = ("pubmed_model_neuroblastoma")
num_abstracts = 29032
database_name = "Neuroblastoma"
st.title(":red[Fast Acting Text Analysis (FATA) 4 Science]")
st.markdown("---")
st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
st.header(f"{database_name} Pubmed corpus.")
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
query = text_input_value
query = query.lower()
query = re.sub("[,.?!&*;:]", "", query)
matches = [" "]
if any([x in query for x in matches]):
st.write("Please only enter one term or a term without spaces")
# query = input ("Enter your keyword(s):")
if query:
bar = st.progress(0)
time.sleep(.05)
st.caption(f":LightSkyBlue[searching {num_abstracts} {database_name} PubMed abstracts] covering 1990-2022")
for i in range(10):
bar.progress((i + 1) * 10)
time.sleep(.1)
try:
model = Word2Vec.load(model_used) # you can continue training with the loaded model!
words = list(model.wv.key_to_index)
X = model.wv[model.wv.key_to_index]
model2 = model.wv[query]
df = pd.DataFrame(X)
except:
st.error("Term occurrence is too low - please try another term")
st.stop()
# def findRelationships(query, df):
table = model.wv.most_similar_cosmul(query, topn=10000)
table = (pd.DataFrame(table))
table.index.name = 'Rank'
table.columns = ['Word', 'SIMILARITY']
print()
print("Similarity to " + str(query))
pd.set_option('display.max_rows', None)
print(table.head(50))
# table.head(10).to_csv("clotting_sim1.csv", index=True)
# short_table = table.head(50)
# print(table)
st.subheader(f"Top 10 Words closely related to {query}")
# calculate the sizes of the squares in the treemap
short_table = table.head(10)
short_table.index += 1
short_table.index = 1 / short_table.index
sizes = short_table.index.tolist()
cmap = plt.cm.Greens(np.linspace(0.05, .5, len(sizes)))
color = [cmap[i] for i in range(len(sizes))]
short_table.set_index('Word', inplace=True)
squarify.plot(sizes=sizes, label=short_table.index.tolist(), color=color, edgecolor="#EBF5FB",
text_kwargs={'fontsize': 10})
# # plot the treemap using matplotlib
plt.axis('off')
fig = plt.gcf()
fig.patch.set_facecolor('#CCFFFF')
# # display the treemap in Streamlit
st.pyplot(fig)
plt.clf()
csv = table.head(100).to_csv().encode('utf-8')
st.download_button(label="download top 100 words (csv)", data=csv, file_name=f'{database_name}_words.csv', mime='text/csv')
# st.write(short_table)
#
print()
print("Human genes similar to " + str(query))
df1 = table
df2 = pd.read_csv('Human_Genes.csv')
m = df1.Word.isin(df2.symbol)
df1 = df1[m]
df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
df1["Human Gene"] = df1["Human Gene"].str.upper()
print(df1.head(50))
print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
st.subheader(f"Top 10 Genes closely related to {query}")
df10 = df1.head(10)
df10.index = 1 / df10.index
sizes = df10.index.tolist()
cmap2 = plt.cm.Blues(np.linspace(0.05, .5, len(sizes)))
color2 = [cmap2[i] for i in range(len(sizes))]
df10.set_index('Human Gene', inplace=True)
squarify.plot(sizes=sizes, label=df10.index.tolist(), color=color2, edgecolor="#EBF5FB",
text_kwargs={'fontsize': 12})
#
# # plot the treemap using matplotlib
plt.axis('off')
fig2 = plt.gcf()
fig2.patch.set_facecolor('#CCFFFF')
# plt.show()
#
# # display the treemap in Streamlit
st.pyplot(fig2)
csv = df1.head(100).to_csv().encode('utf-8')
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
mime='text/csv')
if query:
idlist=[]
search_keyword = {query}
html = urllib.request.urlopen("https://www.youtube.com/@NCIgov/search?query=cancer")
html2 = urllib.request.urlopen("https://www.youtube.com/@CancerCenter/search?query=cancer")
html3 = urllib.request.urlopen("https://www.youtube.com/@NorthwesternMedicine/search?query=cancer")
html4 = urllib.request.urlopen("https://www.youtube.com/@TEDEd/search?query=cancer")
html5 = urllib.request.urlopen("https://www.youtube.com/@CancerResearchUK/search?query=cancer")
video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode())
video_ids2 = re.findall(r"watch\?v=(\S{11})", html2.read().decode())
video_ids3 = re.findall(r"watch\?v=(\S{11})", html3.read().decode())
video_ids4 = re.findall(r"watch\?v=(\S{11})", html4.read().decode())
video_ids5 = re.findall(r"watch\?v=(\S{11})", html5.read().decode())
for i in video_ids2:
video_ids.append(i)
for i in video_ids3:
video_ids.append(i)
for i in video_ids4:
video_ids.append(i)
for i in video_ids5:
video_ids.append(i)
random.shuffle(video_ids)
c1, c2, c3 = st.columns(3)
with c1:
st.video("https://www.youtube.com/watch?v=" + video_ids[0])
with c2:
st.video("https://www.youtube.com/watch?v=" + video_ids[1])
with c3:
st.video("https://www.youtube.com/watch?v=" + video_ids[2])
# width = 40
# side = 30 # (100-width)/2
# _, container, _ = st.columns([side, width, side])
# container.video(data=VIDEO_DATA)
# VIDEO_DATA = "https://www.youtube.com/watch?v=" + video_ids[1]
# width = 40
# side = 30 # (100-width)/2
# _, container, _ = st.columns([side, width, side])
# container.video(data=VIDEO_DATA)
# VIDEO_DATA = "https://www.youtube.com/watch?v=" + video_ids[2]
# width = 40
# side = 30 # (100-width)/2
# _, container, _ = st.columns([side, width, side])
# container.video(data=VIDEO_DATA)
|