Spaces:
Sleeping
Sleeping
File size: 17,382 Bytes
8433bea 509afe3 8433bea 509afe3 c5d67d0 8433bea 444c673 c5d67d0 8433bea c5d67d0 8433bea c5d67d0 444c673 8433bea 444c673 8433bea 444c673 8433bea 444c673 8433bea 444c673 8433bea 444c673 c5d67d0 8433bea c5d67d0 8433bea 444c673 c5d67d0 8433bea 509afe3 8433bea c5d67d0 8433bea c5d67d0 8433bea c5d67d0 8433bea c5d67d0 8433bea c5d67d0 b42ecfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import os
from pathlib import Path
from typing import Optional, Tuple, List, Dict
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import joblib
# ZeroGPU hooks (safe on CPU Spaces too)
import spaces
import torch
# Optional micro-model to "polish" text when GPU window is available
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
# ---------------------
# Constants & storage
# ---------------------
DATA_DIR = Path("data"); DATA_DIR.mkdir(exist_ok=True)
TS_FMT = "%Y-%m-%d %H:%M:%S"
# Load your regressor
DT_PATH = "./decision_tree_regressor.joblib"
decision_tree_regressor = joblib.load(DT_PATH)
# Lightweight text model (CPU ok, faster on GPU)
GEN_MODEL = os.getenv("PLAN_POLISH_MODEL", "google/flan-t5-small")
_tokenizer = AutoTokenizer.from_pretrained(GEN_MODEL)
_model = AutoModelForSeq2SeqLM.from_pretrained(GEN_MODEL)
_generate_cpu = pipeline("text2text-generation", model=_model, tokenizer=_tokenizer, device=-1)
# --------------
# ZeroGPU fns
# --------------
@spaces.GPU
def gpu_warmup() -> str:
return f"cuda={torch.cuda.is_available()}"
@spaces.GPU
def polish_on_gpu(text: str, lang: str = "en") -> str:
"""Polish/translate the already-generated plan inside a GPU window.
Falls back to CPU gracefully if needed.
"""
try:
if torch.cuda.is_available():
gen = pipeline(
"text2text-generation",
model=_model.to("cuda"),
tokenizer=_tokenizer,
device=0,
)
else:
gen = _generate_cpu
prompt = (
"Rewrite the following fasting plan in a friendly coaching tone, keep markdown structure, "
f"and output language '{lang}'. Keep tables and numbered lists concise.\n\n" + text
)
out = gen(prompt, max_new_tokens=700)
return out[0]["generated_text"].strip()
except Exception as e:
out = _generate_cpu(text, max_new_tokens=10)
return text + f"\n\n(Polish step skipped: {e})"
try:
_ = gpu_warmup()
except Exception:
pass
# ---------------------
# Utilities (metrics)
# ---------------------
ACTIVITY = {
"Sedentary": 1.2,
"Lightly active": 1.375,
"Moderately active": 1.55,
"Very active": 1.725,
"Athlete": 1.9,
}
GOAL_CAL_ADJ = { # % change to TDEE
"Fat loss": -0.15,
"Recomp/Maintenance": 0.0,
"Muscle gain": 0.10,
}
def bmi(weight_kg: float, height_cm: float) -> float:
return weight_kg / ((height_cm / 100) ** 2)
def bmr_mifflin(sex: str, weight_kg: float, height_cm: float, age: float) -> float:
s = 5 if sex == "Male" else -161
return 10 * weight_kg + 6.25 * height_cm - 5 * age + s
def tdee(bmr: float, activity: str) -> float:
return bmr * ACTIVITY.get(activity, 1.2)
def parse_hhmm(hhmm: str) -> Tuple[int, int]:
h, m = hhmm.split(":")
h = int(h); m = int(m)
if not (0 <= h <= 23 and 0 <= m <= 59):
raise ValueError("Time must be HH:MM in 24h format.")
return h, m
def fmt_hhmm(h: int, m: int) -> str:
return f"{h:02d}:{m:02d}"
# ---------------------
# Plan generator (deterministic, rich)
# ---------------------
DIET_STYLES = ["Omnivore", "Mediterranean", "Vegetarian", "Vegan", "Low-carb"]
MEAL_IDEAS = {
"Omnivore": [
"Greek yogurt + berries + nuts",
"Chicken bowl (rice, veggies, olive oil)",
"Eggs, avocado, sourdough",
"Salmon, quinoa, asparagus",
"Lean beef, sweet potato, salad",
"Tuna whole-grain wrap",
"Cottage cheese + fruit + seeds",
],
"Mediterranean": [
"Oats with dates, walnuts, olive oil drizzle",
"Grilled fish, lentil salad, greens",
"Hummus platter, wholegrain pita, veg",
"Chickpea tomato stew",
"Feta + olive salad, quinoa",
"Shakshuka + side salad",
"Lentils, roasted veg, tahini",
],
"Vegetarian": [
"Tofu scramble, toast, avocado",
"Paneer tikka bowl",
"Bean chili + brown rice",
"Halloumi, couscous, veg",
"Greek salad + eggs",
"Tempeh stir-fry",
"Yogurt parfait + granola",
],
"Vegan": [
"Tofu scramble, avocado toast",
"Lentil curry + basmati",
"Burrito bowl (beans, corn, salsa)",
"Seitan, roasted potatoes, veg",
"Tofu poke bowl",
"Chickpea pasta + marinara",
"Overnight oats + banana + peanut butter",
],
"Low-carb": [
"Eggs, smoked salmon, salad",
"Chicken Caesar (no croutons)",
"Beef & greens stir-fry",
"Omelette + veg + cheese",
"Zoodles + turkey bolognese",
"Tofu salad w/ tahini",
"Yogurt + nuts (moderate)",
],
}
WORKOUTS = {
"Fat loss": [
"3× LISS cardio 30–40min",
"2× full‑body strength 45min",
"1× intervals 12–16min",
"Daily 8–10k steps"
],
"Recomp/Maintenance": [
"3× full‑body strength 45–60min",
"1–2× LISS cardio 30min",
"Mobility 10min daily",
"8–10k steps"
],
"Muscle gain": [
"4× strength split 45–60min",
"Optional 1× LISS 20–30min",
"Mobility 10min",
"7–9k steps"
],
}
def feeding_schedule(first_meal_hhmm: str, fasting_hours: float) -> List[Tuple[str, str]]:
"""Return 7 (start,end) strings for the eating window each day."""
h, m = parse_hhmm(first_meal_hhmm)
window = max(0.0, 24 - float(fasting_hours))
start_minutes = h * 60 + m
end_minutes = int((start_minutes + window * 60) % (24 * 60))
sched = []
for _ in range(7):
start = fmt_hhmm(h, m)
end = fmt_hhmm(end_minutes // 60, end_minutes % 60)
sched.append((start, end))
return sched
def weekly_plan(diet: str, sched: List[Tuple[str, str]], kcal: int, protein_g: int) -> pd.DataFrame:
ideas = MEAL_IDEAS[diet]
rows = []
for i in range(7):
day = ["Mon","Tue","Wed","Thu","Fri","Sat","Sun"][i]
start, end = sched[i]
meal1 = ideas[i % len(ideas)]
meal2 = ideas[(i+3) % len(ideas)]
snack = "Fruit or nuts (optional)"
rows.append({
"Day": day,
"Feeding window": f"{start}–{end}",
"Meal 1": meal1,
"Meal 2": meal2,
"Protein target": f"≥ {protein_g} g",
"Daily kcal": kcal,
"Snack": snack,
})
return pd.DataFrame(rows)
def shopping_list(diet: str) -> List[str]:
core = [
"Leafy greens, mixed veg, berries",
"Olive oil, nuts/seeds, herbs & spices",
"Coffee/tea, mineral water, electrolytes",
]
extras = {
"Omnivore": ["Chicken, fish, eggs, yogurt, cottage cheese", "Rice/quinoa/sourdough", "Beans/lentils"],
"Mediterranean": ["Fish, feta, olives", "Whole grains (bulgur, farro)", "Chickpeas/lentils"],
"Vegetarian": ["Eggs, dairy, paneer", "Legumes", "Tofu/tempeh"],
"Vegan": ["Tofu/tempeh/seitan", "Beans/lentils", "Plant yogurt/milk"],
"Low-carb": ["Eggs, fish, meat", "Green veg", "Greek yogurt, cheese"],
}
return core + extras[diet]
# ---------------------
# Tracker (history)
# ---------------------
active_fasts: Dict[str, pd.Timestamp] = {}
def _csv(u: str) -> Path:
safe = "".join(ch for ch in (u or "default") if ch.isalnum() or ch in ("_","-"))
return DATA_DIR / f"{safe}.csv"
def hist_load(u: str) -> pd.DataFrame:
p = _csv(u)
if p.exists():
d = pd.read_csv(p)
for c in ["start_time","end_time"]:
if c in d: d[c] = pd.to_datetime(d[c], errors="coerce")
return d
return pd.DataFrame(columns=["start_time","end_time","duration_hours","note"])
def hist_save(u: str, d: pd.DataFrame):
d.to_csv(_csv(u), index=False)
# ---------------------
# Core actions
# ---------------------
def predict_and_plan(fasting_duration, meal_timing, weight, age, gender, height,
activity, goal, diet, lang, ai_polish) -> Tuple[Optional[float], str, str, pd.DataFrame, object, str]:
try:
# Validation
if fasting_duration < 0 or fasting_duration > 72:
raise ValueError("Fasting duration must be 0–72h.")
parse_hhmm(meal_timing)
if weight <= 0 or height <= 0 or age < 0:
raise ValueError("Check weight/height/age values.")
# Model score
df = pd.DataFrame({
"Fasting Duration (hours)": [float(fasting_duration)],
"Meal Timing (hour:minute)": [lambda t=meal_timing: int(t.split(":")[0]) + int(t.split(":")[1]) / 60.0][0](),
"Body Weight (kg)": [float(weight)],
"Age (years)": [float(age)],
"Height (cm)": [float(height)],
"Gender_Male": [1 if gender == "Male" else 0],
"Gender_Other": [1 if gender == "Other" else 0],
})
score = float(decision_tree_regressor.predict(df)[0])
# Metrics
bmr = bmr_mifflin(gender, weight, height, age)
tdee_kcal = tdee(bmr, activity)
adj = GOAL_CAL_ADJ[goal]
target_kcal = int(round(tdee_kcal * (1 + adj)))
protein_g = int(round(max(1.6 * weight, 90 if goal == "Muscle gain" else 80)))
bmi_val = round(bmi(weight, height), 1)
# Schedule & tables
sched = feeding_schedule(meal_timing, float(fasting_duration))
plan_df = weekly_plan(diet, sched, target_kcal, protein_g)
# Chart (Gantt-style feeding window)
chart_df = pd.DataFrame({
"Day": ["Mon","Tue","Wed","Thu","Fri","Sat","Sun"],
"start": [int(s.split(":")[0])*60 + int(s.split(":")[1]) for s,_ in sched],
"length": [max(0, int((24 - float(fasting_duration))*60))]*7,
})
fig = px.bar(chart_df, y="Day", x="length", base="start", orientation="h", title="Feeding window each day (minutes)")
fig.update_layout(xaxis=dict(range=[0,1440], tickvals=[0,360,720,1080,1440], ticktext=["00:00","06:00","12:00","18:00","24:00"]))
# Markdown plan
hdr = {
"en": "## Your 7‑day intermittent fasting plan",
"es": "## Tu plan de ayuno intermitente de 7 días",
}[lang]
kpis = (
f"**Score:** {score:.1f} • **BMI:** {bmi_val} • **BMR:** {int(bmr)} kcal • **TDEE:** {int(tdee_kcal)} kcal • "
f"**Target:** {target_kcal} kcal • **Protein:** ≥ {protein_g} g • **Diet:** {diet}\n"
)
sched_md = "\n".join([f"- **{d}**: {s} – {e}" for d,(s,e) in zip(["Mon","Tue","Wed","Thu","Fri","Sat","Sun"], sched)])
workouts = "\n".join([f"- {w}" for w in WORKOUTS[goal]])
shop = "\n".join([f"- {x}" for x in shopping_list(diet)])
plan_md = f"""
{hdr}
{kpis}
### Feeding window (daily)
{sched_md}
### Weekly training
{workouts}
### Daily meals (example week)
(See table below for details.)
### Shopping list
{shop}
> Hydration & electrolytes during the fast, protein at each meal, whole foods, and 7–9 hours sleep.
""".strip()
# Optional AI polish (ZeroGPU window)
if ai_polish:
try:
plan_md = polish_on_gpu(plan_md, lang)
except Exception:
pass
# Export file path (Markdown)
md_path = DATA_DIR / "plan.md"
md_path.write_text(plan_md, encoding="utf-8")
return score, kpis, plan_md, plan_df, fig, str(md_path)
except Exception as e:
return None, "", f"⚠️ {e}", pd.DataFrame(), None, ""
# ---------------------
# Tracker actions
# ---------------------
def start_fast(user: str, note: str):
if not user: return "Enter username in Settings.", None
if user in active_fasts: return f"Already fasting since {active_fasts[user]}.", None
active_fasts[user] = pd.Timestamp.now()
return f"✅ Fast started at {active_fasts[user].strftime(TS_FMT)}.", None
def end_fast(user: str):
if not user: return "Enter username in Settings.", None, None, None
if user not in active_fasts: return "No active fast.", None, None, None
end = pd.Timestamp.now(); start = active_fasts.pop(user)
dur = round((end - start).total_seconds()/3600, 2)
df = hist_load(user)
df.loc[len(df)] = [start, end, dur, ""]
hist_save(user, df)
chart = make_hist_chart(df)
return f"✅ Fast ended at {end.strftime(TS_FMT)} • {dur} h", df.tail(12), chart, hist_stats(df)
def refresh_hist(user: str):
df = hist_load(user)
return df.tail(12), make_hist_chart(df), hist_stats(df)
def make_hist_chart(df: pd.DataFrame):
if df.empty: return None
d = df.dropna(subset=["end_time"]).copy()
d["date"] = pd.to_datetime(d["end_time"]).dt.date
fig = px.bar(d, x="date", y="duration_hours", title="Fasting duration by day (h)")
fig.update_layout(height=300, margin=dict(l=10,r=10,t=40,b=10))
return fig
def hist_stats(df: pd.DataFrame) -> str:
if df.empty: return "No history yet."
last7 = df.tail(7)
avg = last7["duration_hours"].mean()
streak = compute_streak(df)
return f"Total fasts: {len(df)}\nAvg (last 7): {avg:.2f} h\nCurrent streak: {streak} day(s)"
def compute_streak(df: pd.DataFrame) -> int:
d = df.dropna(subset=["end_time"]).copy()
if d.empty: return 0
days = set(pd.to_datetime(d["end_time"]).dt.date)
cur = pd.Timestamp.now().date(); streak=0
while cur in days:
streak+=1; cur = cur - pd.Timedelta(days=1)
return streak
# ---------------------
# UI
# ---------------------
with gr.Blocks(
title="Intermittent Fasting Coach — Pro",
theme=gr.themes.Soft(primary_hue=gr.themes.colors.orange, neutral_hue=gr.themes.colors.gray),
) as demo:
gr.Markdown("""
# 🥣 Intermittent Fasting — Pro
Detailed coaching plans + tracker. ZeroGPU‑ready (with CPU fallback). All data stored locally in this Space.
""")
with gr.Tabs():
# --- Coach tab
with gr.TabItem("Coach"):
with gr.Row():
with gr.Column():
fasting_duration = gr.Number(label="Fasting Duration (h)", value=16, minimum=0, maximum=72, step=0.5)
meal_timing = gr.Textbox(label="First meal time (HH:MM)", value="12:30")
weight = gr.Number(label="Body Weight (kg)", value=70, step=0.5)
with gr.Column():
age = gr.Slider(label="Age (years)", minimum=18, maximum=100, value=35)
gender = gr.Radio(["Male","Female","Other"], label="Gender", value="Male")
height = gr.Number(label="Height (cm)", value=175)
with gr.Row():
activity = gr.Dropdown(choices=list(ACTIVITY.keys()), value="Lightly active", label="Activity")
goal = gr.Dropdown(choices=list(GOAL_CAL_ADJ.keys()), value="Recomp/Maintenance", label="Goal")
diet = gr.Dropdown(choices=DIET_STYLES, value="Mediterranean", label="Diet style")
lang = gr.Radio(["en","es"], value="en", label="Language")
ai_polish = gr.Checkbox(value=True, label="AI polish (uses ZeroGPU)")
btn = gr.Button("Predict & Build Plan", variant="primary")
score_out = gr.Number(label="Predicted score")
kpi_out = gr.Markdown()
plan_md = gr.Markdown()
plan_tbl = gr.Dataframe(headers=["Day","Feeding window","Meal 1","Meal 2","Protein target","Daily kcal","Snack"], interactive=False)
fig = gr.Plot()
dl = gr.DownloadButton(label="Download plan (.md)")
btn.click(
predict_and_plan,
inputs=[fasting_duration, meal_timing, weight, age, gender, height, activity, goal, diet, lang, ai_polish],
outputs=[score_out, kpi_out, plan_md, plan_tbl, fig, dl],
api_name="coach_plan"
)
# --- Tracker tab
with gr.TabItem("Tracker"):
with gr.Row():
user = gr.Textbox(label="Username", value="")
note = gr.Textbox(label="Note (optional)")
with gr.Row():
b1 = gr.Button("Start fast", variant="primary")
b2 = gr.Button("End fast")
b3 = gr.Button("Reload history")
status = gr.Markdown("Not fasting.")
hist = gr.Dataframe(interactive=False)
hist_fig = gr.Plot()
stats = gr.Markdown()
b1.click(start_fast, inputs=[user, note], outputs=[status, note])
b2.click(end_fast, inputs=[user], outputs=[status, hist, hist_fig, stats])
b3.click(refresh_hist, inputs=[user], outputs=[hist, hist_fig, stats])
demo.load(refresh_hist, inputs=[user], outputs=[hist, hist_fig, stats])
# --- About tab
with gr.TabItem("About"):
gr.Markdown("""
**How it works**
• Your predictor estimates a health score from inputs.
• The coach builds a 7‑day schedule matching your fasting window, goal, activity and diet style.
• Optional AI polish refines wording using a tiny model (ZeroGPU window).
• Tracker stores CSVs under `/data/` and never sends data elsewhere.
""")
if __name__ == "__main__":
demo.queue().launch()
|