Spaces:
Running
Running
import os | |
import math | |
import argparse | |
import glob | |
import gradio | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
from transformers import ( | |
PreTrainedTokenizerBase, | |
DataCollatorForSeq2Seq, | |
) | |
from model import load_model_for_inference | |
from dataset import DatasetReader, count_lines | |
from accelerate import Accelerator, DistributedType, find_executable_batch_size | |
from typing import Optional | |
def encode_string(text): | |
return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t") | |
def get_dataloader( | |
accelerator: Accelerator, | |
filename: str, | |
tokenizer: PreTrainedTokenizerBase, | |
batch_size: int, | |
max_length: int, | |
prompt: str, | |
) -> DataLoader: | |
dataset = DatasetReader( | |
filename=filename, | |
tokenizer=tokenizer, | |
max_length=max_length, | |
prompt=prompt, | |
) | |
if accelerator.distributed_type == DistributedType.TPU: | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
padding="max_length", | |
max_length=max_length, | |
label_pad_token_id=tokenizer.pad_token_id, | |
return_tensors="pt", | |
) | |
else: | |
data_collator = DataCollatorForSeq2Seq( | |
tokenizer, | |
padding=True, | |
label_pad_token_id=tokenizer.pad_token_id, | |
# max_length=max_length, No need to set max_length here, we already truncate in the preprocess function | |
pad_to_multiple_of=8, | |
return_tensors="pt", | |
) | |
return DataLoader( | |
dataset, | |
batch_size=batch_size, | |
collate_fn=data_collator, | |
num_workers=0, # Disable multiprocessing | |
) | |
def main( | |
sentences_path: Optional[str], | |
sentences_dir: Optional[str], | |
files_extension: str, | |
output_path: str, | |
source_lang: Optional[str], | |
target_lang: Optional[str], | |
starting_batch_size: int, | |
model_name: str = "facebook/m2m100_1.2B", | |
lora_weights_name_or_path: str = None, | |
force_auto_device_map: bool = False, | |
precision: str = None, | |
max_length: int = 256, | |
num_beams: int = 4, | |
num_return_sequences: int = 1, | |
do_sample: bool = False, | |
temperature: float = 1.0, | |
top_k: int = 50, | |
top_p: float = 1.0, | |
keep_special_tokens: bool = False, | |
keep_tokenization_spaces: bool = False, | |
repetition_penalty: float = None, | |
prompt: str = None, | |
trust_remote_code: bool = False, | |
): | |
accelerator = Accelerator() | |
if force_auto_device_map and starting_batch_size >= 64: | |
print( | |
f"WARNING: You are using a very large batch size ({starting_batch_size}) and the auto_device_map flag. " | |
f"auto_device_map will offload model parameters to the CPU when they don't fit on the GPU VRAM. " | |
f"If you use a very large batch size, it will offload a lot of parameters to the CPU and slow down the " | |
f"inference. You should consider using a smaller batch size, i.e '--starting_batch_size 8'" | |
) | |
if sentences_path is None and sentences_dir is None: | |
raise ValueError( | |
"You must specify either --sentences_path or --sentences_dir. Use --help for more details." | |
) | |
if sentences_path is not None and sentences_dir is not None: | |
raise ValueError( | |
"You must specify either --sentences_path or --sentences_dir, not both. Use --help for more details." | |
) | |
if precision is None: | |
quantization = None | |
dtype = None | |
elif precision == "8" or precision == "4": | |
quantization = int(precision) | |
dtype = None | |
elif precision == "fp16": | |
quantization = None | |
dtype = "float16" | |
elif precision == "bf16": | |
quantization = None | |
dtype = "bfloat16" | |
elif precision == "32": | |
quantization = None | |
dtype = "float32" | |
else: | |
raise ValueError( | |
f"Precision {precision} not supported. Please choose between 8, 4, fp16, bf16, 32 or None." | |
) | |
model, tokenizer = load_model_for_inference( | |
weights_path=model_name, | |
quantization=quantization, | |
lora_weights_name_or_path=lora_weights_name_or_path, | |
torch_dtype=dtype, | |
force_auto_device_map=force_auto_device_map, | |
trust_remote_code=trust_remote_code, | |
) | |
is_translation_model = hasattr(tokenizer, "lang_code_to_id") | |
lang_code_to_idx = None | |
if ( | |
is_translation_model | |
and (source_lang is None or target_lang is None) | |
and "small100" not in model_name | |
): | |
raise ValueError( | |
f"The model you are using requires a source and target language. " | |
f"Please specify them with --source-lang and --target-lang. " | |
f"The supported languages are: {tokenizer.lang_code_to_id.keys()}" | |
) | |
if not is_translation_model and ( | |
source_lang is not None or target_lang is not None | |
): | |
if prompt is None: | |
print( | |
"WARNING: You are using a model that does not support source and target languages parameters " | |
"but you specified them. You probably want to use m2m100/nllb200 for translation or " | |
"set --prompt to define the task for you model. " | |
) | |
else: | |
print( | |
"WARNING: You are using a model that does not support source and target languages parameters " | |
"but you specified them." | |
) | |
if prompt is not None and "%%SENTENCE%%" not in prompt: | |
raise ValueError( | |
f"The prompt must contain the %%SENTENCE%% token to indicate where the sentence should be inserted. " | |
f"Your prompt: {prompt}" | |
) | |
if is_translation_model: | |
try: | |
_ = tokenizer.lang_code_to_id[source_lang] | |
except KeyError: | |
raise KeyError( | |
f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}" | |
) | |
tokenizer.src_lang = source_lang | |
try: | |
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang] | |
except KeyError: | |
raise KeyError( | |
f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}" | |
) | |
if "small100" in model_name: | |
tokenizer.tgt_lang = target_lang | |
# We don't need to force the BOS token, so we set is_translation_model to False | |
is_translation_model = False | |
if model.config.model_type == "seamless_m4t": | |
# Loading a seamless_m4t model, we need to set a few things to ensure compatibility | |
supported_langs = tokenizer.additional_special_tokens | |
supported_langs = [lang.replace("__", "") for lang in supported_langs] | |
if source_lang is None or target_lang is None: | |
raise ValueError( | |
f"The model you are using requires a source and target language. " | |
f"Please specify them with --source-lang and --target-lang. " | |
f"The supported languages are: {supported_langs}" | |
) | |
if source_lang not in supported_langs: | |
raise ValueError( | |
f"Language {source_lang} not found in tokenizer. Available languages: {supported_langs}" | |
) | |
if target_lang not in supported_langs: | |
raise ValueError( | |
f"Language {target_lang} not found in tokenizer. Available languages: {supported_langs}" | |
) | |
tokenizer.src_lang = source_lang | |
gen_kwargs = { | |
"max_new_tokens": max_length, | |
"num_beams": num_beams, | |
"num_return_sequences": num_return_sequences, | |
"do_sample": do_sample, | |
"temperature": temperature, | |
"top_k": top_k, | |
"top_p": top_p, | |
} | |
if repetition_penalty is not None: | |
gen_kwargs["repetition_penalty"] = repetition_penalty | |
if is_translation_model: | |
gen_kwargs["forced_bos_token_id"] = lang_code_to_idx | |
if model.config.model_type == "seamless_m4t": | |
gen_kwargs["tgt_lang"] = target_lang | |
if accelerator.is_main_process: | |
print( | |
f"** Translation **\n" | |
f"Input file: {sentences_path}\n" | |
f"Sentences dir: {sentences_dir}\n" | |
f"Output file: {output_path}\n" | |
f"Source language: {source_lang}\n" | |
f"Target language: {target_lang}\n" | |
f"Force target lang as BOS token: {is_translation_model}\n" | |
f"Prompt: {prompt}\n" | |
f"Starting batch size: {starting_batch_size}\n" | |
f"Device: {str(accelerator.device).split(':')[0]}\n" | |
f"Num. Devices: {accelerator.num_processes}\n" | |
f"Distributed_type: {accelerator.distributed_type}\n" | |
f"Max length: {max_length}\n" | |
f"Quantization: {quantization}\n" | |
f"Precision: {dtype}\n" | |
f"Model: {model_name}\n" | |
f"LoRA weights: {lora_weights_name_or_path}\n" | |
f"Force auto device map: {force_auto_device_map}\n" | |
f"Keep special tokens: {keep_special_tokens}\n" | |
f"Keep tokenization spaces: {keep_tokenization_spaces}\n" | |
) | |
print("** Generation parameters **") | |
print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items())) | |
print("\n") | |
def inference(batch_size, sentences_path, output_path): | |
nonlocal model, tokenizer, max_length, gen_kwargs, precision, prompt, is_translation_model | |
print(f"Translating {sentences_path} with batch size {batch_size}") | |
total_lines: int = count_lines(sentences_path) | |
data_loader = get_dataloader( | |
accelerator=accelerator, | |
filename=sentences_path, | |
tokenizer=tokenizer, | |
batch_size=batch_size, | |
max_length=max_length, | |
prompt=prompt, | |
) | |
model, data_loader = accelerator.prepare(model, data_loader) | |
samples_seen: int = 0 | |
with tqdm( | |
total=total_lines, | |
desc="Dataset translation", | |
leave=True, | |
ascii=True, | |
disable=(not accelerator.is_main_process), | |
) as pbar, open(output_path, "w", encoding="utf-8") as output_file: | |
with torch.no_grad(): | |
for step, batch in enumerate(data_loader): | |
batch["input_ids"] = batch["input_ids"] | |
batch["attention_mask"] = batch["attention_mask"] | |
generated_tokens = accelerator.unwrap_model(model).generate( | |
**batch, | |
**gen_kwargs, | |
) | |
generated_tokens = accelerator.pad_across_processes( | |
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id | |
) | |
generated_tokens = ( | |
accelerator.gather(generated_tokens).cpu().numpy() | |
) | |
tgt_text = tokenizer.batch_decode( | |
generated_tokens, | |
skip_special_tokens=not keep_special_tokens, | |
clean_up_tokenization_spaces=not keep_tokenization_spaces, | |
) | |
if accelerator.is_main_process: | |
if ( | |
step | |
== math.ceil( | |
math.ceil(total_lines / batch_size) | |
/ accelerator.num_processes | |
) | |
- 1 | |
): | |
tgt_text = tgt_text[ | |
: (total_lines * num_return_sequences) - samples_seen | |
] | |
else: | |
samples_seen += len(tgt_text) | |
print( | |
"\n".join( | |
[encode_string(sentence) for sentence in tgt_text] | |
), | |
file=output_file, | |
) | |
pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"]) | |
print(f"Translation done. Output written to {output_path}\n") | |
if sentences_path is not None: | |
os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True) | |
inference(sentences_path=sentences_path, output_path=output_path) | |
if sentences_dir is not None: | |
print( | |
f"Translating all files in {sentences_dir}, with extension {files_extension}" | |
) | |
os.makedirs(os.path.abspath(output_path), exist_ok=True) | |
for filename in glob.glob( | |
os.path.join( | |
sentences_dir, f"*.{files_extension}" if files_extension else "*" | |
) | |
): | |
output_filename = os.path.join(output_path, os.path.basename(filename)) | |
inference(sentences_path=filename, output_path=output_filename) | |
print(f"Translation done.\n") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Run the translation experiments") | |
input_group = parser.add_mutually_exclusive_group(required=True) | |
input_group.add_argument( | |
"--sentences_path", | |
default=None, | |
type=str, | |
help="Path to a txt file containing the sentences to translate. One sentence per line.", | |
) | |
input_group.add_argument( | |
"--sentences_dir", | |
type=str, | |
default=None, | |
help="Path to a directory containing the sentences to translate. " | |
"Sentences must be in .txt files containing containing one sentence per line.", | |
) | |
parser.add_argument( | |
"--files_extension", | |
type=str, | |
default="txt", | |
help="If sentences_dir is specified, extension of the files to translate. Defaults to txt. " | |
"If set to an empty string, we will translate all files in the directory.", | |
) | |
parser.add_argument( | |
"--output_path", | |
type=str, | |
required=True, | |
help="Path to a txt file where the translated sentences will be written. If the input is a directory, " | |
"the output will be a directory with the same structure.", | |
) | |
parser.add_argument( | |
"--source_lang", | |
type=str, | |
default=None, | |
required=False, | |
help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200", | |
) | |
parser.add_argument( | |
"--target_lang", | |
type=str, | |
default=None, | |
required=False, | |
help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200", | |
) | |
parser.add_argument( | |
"--starting_batch_size", | |
type=int, | |
default=128, | |
help="Starting batch size, we will automatically reduce it if we find an OOM error." | |
"If you use multiple devices, we will divide this number by the number of devices.", | |
) | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="facebook/m2m100_1.2B", | |
help="Path to the model to use. See: https://huggingface.co/models", | |
) | |
parser.add_argument( | |
"--lora_weights_name_or_path", | |
type=str, | |
default=None, | |
help="If the model uses LoRA weights, path to those weights. See: https://github.com/huggingface/peft", | |
) | |
parser.add_argument( | |
"--force_auto_device_map", | |
action="store_true", | |
help=" Whether to force the use of the auto device map. If set to True, " | |
"the model will be split across GPUs and CPU to fit the model in memory. " | |
"If set to False, a full copy of the model will be loaded into each GPU. Defaults to False.", | |
) | |
parser.add_argument( | |
"--max_length", | |
type=int, | |
default=256, | |
help="Maximum number of tokens in the source sentence and generated sentence. " | |
"Increase this value to translate longer sentences, at the cost of increasing memory usage.", | |
) | |
parser.add_argument( | |
"--num_beams", | |
type=int, | |
default=5, | |
help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory", | |
) | |
parser.add_argument( | |
"--num_return_sequences", | |
type=int, | |
default=1, | |
help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
default=None, | |
choices=["bf16", "fp16", "32", "4", "8"], | |
help="Precision of the model. bf16, fp16 or 32, 8 , 4 " | |
"(4bits/8bits quantification, requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes). " | |
"If None, we will use the torch.dtype of the model weights.", | |
) | |
parser.add_argument( | |
"--do_sample", | |
action="store_true", | |
help="Use sampling instead of beam search.", | |
) | |
parser.add_argument( | |
"--temperature", | |
type=float, | |
default=0.8, | |
help="Temperature for sampling, value used only if do_sample is True.", | |
) | |
parser.add_argument( | |
"--top_k", | |
type=int, | |
default=100, | |
help="If do_sample is True, will sample from the top k most likely tokens.", | |
) | |
parser.add_argument( | |
"--top_p", | |
type=float, | |
default=0.75, | |
help="If do_sample is True, will sample from the top k most likely tokens.", | |
) | |
parser.add_argument( | |
"--keep_special_tokens", | |
action="store_true", | |
help="Keep special tokens in the decoded text.", | |
) | |
parser.add_argument( | |
"--keep_tokenization_spaces", | |
action="store_true", | |
help="Do not clean spaces in the decoded text.", | |
) | |
parser.add_argument( | |
"--repetition_penalty", | |
type=float, | |
default=None, | |
help="Repetition penalty.", | |
) | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
default=None, | |
help="Prompt to use for generation. " | |
"It must include the special token %%SENTENCE%% which will be replaced by the sentence to translate.", | |
) | |
parser.add_argument( | |
"--trust_remote_code", | |
action="store_true", | |
help="If set we will trust remote code in HuggingFace models. This is required for some models.", | |
) | |
args = parser.parse_args() | |
main( | |
sentences_path=args.sentences_path, | |
sentences_dir=args.sentences_dir, | |
files_extension=args.files_extension, | |
output_path=args.output_path, | |
source_lang=args.source_lang, | |
target_lang=args.target_lang, | |
starting_batch_size=args.starting_batch_size, | |
model_name=args.model_name, | |
max_length=args.max_length, | |
num_beams=args.num_beams, | |
num_return_sequences=args.num_return_sequences, | |
precision=args.precision, | |
do_sample=args.do_sample, | |
temperature=args.temperature, | |
top_k=args.top_k, | |
top_p=args.top_p, | |
keep_special_tokens=args.keep_special_tokens, | |
keep_tokenization_spaces=args.keep_tokenization_spaces, | |
repetition_penalty=args.repetition_penalty, | |
prompt=args.prompt, | |
trust_remote_code=args.trust_remote_code, | |
) | |
demo = gradio.Interface(fn=main, inputs="textbox", outputs="textbox") | |
demo.launch(share=True) | |