File size: 19,048 Bytes
5bd7f14
 
 
9dcafee
9c6ba11
5bd7f14
 
 
 
 
 
b873cb9
 
 
 
5bd7f14
d54a92e
5bd7f14
b873cb9
5bd7f14
d3132fd
b873cb9
9dcafee
 
b873cb9
f016c88
 
 
 
b873cb9
 
 
 
 
 
d54a92e
b873cb9
9dcafee
 
 
 
 
 
b873cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0f30d
b873cb9
1e19e28
 
 
24fe65c
9dcafee
 
1e19e28
59dc238
d54a92e
 
 
9dcafee
b873cb9
95d0c3a
5401d1a
 
 
 
086ac2b
2a897d7
390a692
d54a92e
9dcafee
1e19e28
d54a92e
24fe65c
 
 
 
b873cb9
fbc4e83
 
 
 
 
 
 
 
d54a92e
 
 
 
 
 
b873cb9
d54a92e
 
b873cb9
d54a92e
 
 
 
 
b873cb9
d54a92e
 
998d5ca
 
d54a92e
 
 
 
 
 
9dcafee
d54a92e
 
 
9dcafee
d54a92e
9dcafee
 
 
 
 
d54a92e
 
 
 
5401d1a
d54a92e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911ab5a
 
 
 
1e19e28
9dcafee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b873cb9
9dcafee
b873cb9
95d0c3a
5401d1a
 
 
 
b873cb9
1e19e28
390a692
 
 
9dcafee
 
 
 
 
02502dd
 
 
57ffa19
02502dd
 
 
 
911ab5a
d54a92e
02502dd
774b679
02502dd
 
 
d54a92e
 
02502dd
d54a92e
 
2a897d7
 
02502dd
5401d1a
 
 
1e19e28
b873cb9
9dcafee
 
 
 
1e19e28
9dcafee
1e19e28
b873cb9
 
 
 
 
 
d54a92e
b873cb9
749ff6d
b873cb9
749ff6d
4db19c9
 
b873cb9
011cb1f
4db19c9
 
 
 
b873cb9
 
4db19c9
b873cb9
 
749ff6d
b873cb9
d54a92e
 
b873cb9
1e19e28
b873cb9
 
 
749ff6d
b873cb9
 
 
1e19e28
b873cb9
2a897d7
 
 
b873cb9
4db19c9
5bd7f14
 
 
 
 
 
 
 
4db19c9
011cb1f
4db19c9
 
 
 
0f4f627
3d26fd2
f016c88
3d26fd2
0f4f627
 
1e19e28
a4abd95
b873cb9
9dcafee
 
 
 
 
 
1e19e28
2661eab
 
1e19e28
 
a0c5750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c6ba11
59dc238
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import math
import argparse
import glob
import gradio

import torch
from torch.utils.data import DataLoader

from tqdm import tqdm

from transformers import (
    PreTrainedTokenizerBase,
    DataCollatorForSeq2Seq,
)

from model import load_model_for_inference

from dataset import DatasetReader, count_lines

from accelerate import Accelerator, DistributedType, find_executable_batch_size

from typing import Optional


def encode_string(text):
    return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t")


def get_dataloader(
    accelerator: Accelerator,
    filename: str,
    tokenizer: PreTrainedTokenizerBase,
    batch_size: int,
    max_length: int,
    prompt: str,
) -> DataLoader:
    dataset = DatasetReader(
        filename=filename,
        tokenizer=tokenizer,
        max_length=max_length,
        prompt=prompt,
    )
    if accelerator.distributed_type == DistributedType.TPU:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            padding="max_length",
            max_length=max_length,
            label_pad_token_id=tokenizer.pad_token_id,
            return_tensors="pt",
        )
    else:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            padding=True,
            label_pad_token_id=tokenizer.pad_token_id,
            # max_length=max_length, No need to set max_length here, we already truncate in the preprocess function
            pad_to_multiple_of=8,
            return_tensors="pt",
        )

    return DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=data_collator,
        num_workers=0,  # Disable multiprocessing
    )


def main(
    input_string: str,
    source_lang: Optional[str],
    target_lang: Optional[str],
    model_name: str = "facebook/m2m100_1.2B",
    starting_batch_size: int = 8,
    lora_weights_name_or_path: str = None,
    force_auto_device_map: bool = False,
    precision: str = None,
    max_length: int = 256,
    num_beams: int = 4,
    num_return_sequences: int = 1,
    do_sample: bool = False,
    temperature: float = 1.0,
    top_k: int = 50,
    top_p: float = 1.0,
    keep_special_tokens: bool = False,
    keep_tokenization_spaces: bool = False,
    repetition_penalty: float = None,
    prompt: str = None,
    trust_remote_code: bool = False,
):
    accelerator = Accelerator()
    sentences_path = "input.txt"
    output_path = "output.txt"
    with open(sentences_path, "w", encoding="utf-8") as f:
        f.write(input_string)

    if force_auto_device_map and starting_batch_size >= 64:
        print(
            f"WARNING: You are using a very large batch size ({starting_batch_size}) and the auto_device_map  flag. "
            f"auto_device_map will offload model parameters to the CPU when they don't fit on the GPU VRAM. "
            f"If you use a very large batch size, it will offload a lot of parameters to the CPU and slow down the "
            f"inference. You should consider using a smaller batch size, i.e '--starting_batch_size 8'"
        )

    if precision is None:
        quantization = None
        dtype = None
    elif precision == "8" or precision == "4":
        quantization = int(precision)
        dtype = None
    elif precision == "fp16":
        quantization = None
        dtype = "float16"
    elif precision == "bf16":
        quantization = None
        dtype = "bfloat16"
    elif precision == "32":
        quantization = None
        dtype = "float32"
    else:
        raise ValueError(
            f"Precision {precision} not supported. Please choose between 8, 4, fp16, bf16, 32 or None."
        )

    model, tokenizer = load_model_for_inference(
        weights_path=model_name,
        quantization=quantization,
        lora_weights_name_or_path=lora_weights_name_or_path,
        torch_dtype=dtype,
        force_auto_device_map=force_auto_device_map,
        trust_remote_code=trust_remote_code,
    )

    is_translation_model = hasattr(tokenizer, "lang_code_to_id")
    lang_code_to_idx = None

    if (
        is_translation_model
        and (source_lang is None or target_lang is None)
        and "small100" not in model_name
    ):
        raise ValueError(
            f"The model you are using requires a source and target language. "
            f"Please specify them with --source-lang and --target-lang. "
            f"The supported languages are: {tokenizer.lang_code_to_id.keys()}"
        )
    if not is_translation_model and (
        source_lang is not None or target_lang is not None
    ):
        if prompt is None:
            print(
                "WARNING: You are using a model that does not support source and target languages parameters "
                "but you specified them. You probably want to use m2m100/nllb200 for translation or "
                "set --prompt to define the task for you model. "
            )
        else:
            print(
                "WARNING: You are using a model that does not support source and target languages parameters "
                "but you specified them."
            )

    if prompt is not None and "%%SENTENCE%%" not in prompt:
        raise ValueError(
            f"The prompt must contain the %%SENTENCE%% token to indicate where the sentence should be inserted. "
            f"Your prompt: {prompt}"
        )

    if is_translation_model:
        try:
            _ = tokenizer.lang_code_to_id[source_lang]
        except KeyError:
            raise KeyError(
                f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
            )
        tokenizer.src_lang = source_lang

        try:
            lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
        except KeyError:
            raise KeyError(
                f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
            )
        if "small100" in model_name:
            tokenizer.tgt_lang = target_lang
            # We don't need to force the BOS token, so we set is_translation_model to False
            is_translation_model = False

    if model.config.model_type == "seamless_m4t":
        # Loading a seamless_m4t model, we need to set a few things to ensure compatibility

        supported_langs = tokenizer.additional_special_tokens
        supported_langs = [lang.replace("__", "") for lang in supported_langs]

        if source_lang is None or target_lang is None:
            raise ValueError(
                f"The model you are using requires a source and target language. "
                f"Please specify them with --source-lang and --target-lang. "
                f"The supported languages are: {supported_langs}"
            )

        if source_lang not in supported_langs:
            raise ValueError(
                f"Language {source_lang} not found in tokenizer. Available languages: {supported_langs}"
            )
        if target_lang not in supported_langs:
            raise ValueError(
                f"Language {target_lang} not found in tokenizer. Available languages: {supported_langs}"
            )

        tokenizer.src_lang = source_lang

    gen_kwargs = {
        "max_new_tokens": max_length,
        "num_beams": num_beams,
        "num_return_sequences": num_return_sequences,
        "do_sample": do_sample,
        "temperature": temperature,
        "top_k": top_k,
        "top_p": top_p,
    }

    if repetition_penalty is not None:
        gen_kwargs["repetition_penalty"] = repetition_penalty

    if is_translation_model:
        gen_kwargs["forced_bos_token_id"] = lang_code_to_idx

    if model.config.model_type == "seamless_m4t":
        gen_kwargs["tgt_lang"] = target_lang

    if accelerator.is_main_process:
        print(
            f"** Translation **\n"
            f"Input file: {sentences_path}\n"
            f"Output file: {output_path}\n"
            f"Source language: {source_lang}\n"
            f"Target language: {target_lang}\n"
            f"Force target lang as BOS token: {is_translation_model}\n"
            f"Prompt: {prompt}\n"
            f"Starting batch size: {starting_batch_size}\n"
            f"Device: {str(accelerator.device).split(':')[0]}\n"
            f"Num. Devices: {accelerator.num_processes}\n"
            f"Distributed_type: {accelerator.distributed_type}\n"
            f"Max length: {max_length}\n"
            f"Quantization: {quantization}\n"
            f"Precision: {dtype}\n"
            f"Model: {model_name}\n"
            f"LoRA weights: {lora_weights_name_or_path}\n"
            f"Force auto device map: {force_auto_device_map}\n"
            f"Keep special tokens: {keep_special_tokens}\n"
            f"Keep tokenization spaces: {keep_tokenization_spaces}\n"
        )
        print("** Generation parameters **")
        print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items()))
        print("\n")

    @find_executable_batch_size(starting_batch_size=starting_batch_size)
    def inference(batch_size, sentences_path, output_path):
        nonlocal model, tokenizer, max_length, gen_kwargs, precision, prompt, is_translation_model

        print(f"Translating {sentences_path} with batch size {batch_size}")

        total_lines: int = count_lines(sentences_path)

        data_loader = get_dataloader(
            accelerator=accelerator,
            filename=sentences_path,
            tokenizer=tokenizer,
            batch_size=batch_size,
            max_length=max_length,
            prompt=prompt,
        )

        model, data_loader = accelerator.prepare(model, data_loader)

        samples_seen: int = 0

        with tqdm(
            total=total_lines,
            desc="Dataset translation",
            leave=True,
            ascii=True,
            disable=(not accelerator.is_main_process),
        ) as pbar, open(output_path, "w", encoding="utf-8") as output_file:
            with torch.no_grad():
                for step, batch in enumerate(data_loader):
                    batch["input_ids"] = batch["input_ids"]
                    batch["attention_mask"] = batch["attention_mask"]

                    generated_tokens = accelerator.unwrap_model(model).generate(
                        **batch,
                        **gen_kwargs,
                    )

                    generated_tokens = accelerator.pad_across_processes(
                        generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
                    )

                    generated_tokens = (
                        accelerator.gather(generated_tokens).cpu().numpy()
                    )

                    tgt_text = tokenizer.batch_decode(
                        generated_tokens,
                        skip_special_tokens=not keep_special_tokens,
                        clean_up_tokenization_spaces=not keep_tokenization_spaces,
                    )
                    if accelerator.is_main_process:
                        if (
                            step
                            == math.ceil(
                                math.ceil(total_lines / batch_size)
                                / accelerator.num_processes
                            )
                            - 1
                        ):
                            tgt_text = tgt_text[
                                : (total_lines * num_return_sequences) - samples_seen
                            ]
                        else:
                            samples_seen += len(tgt_text)

                        print(
                            "\n".join(
                                [encode_string(sentence) for sentence in tgt_text]
                            ),
                            file=output_file,
                        )

                    pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"])

        print(f"Translation done. Output written to {output_path}\n")

    if sentences_path is not None:
        os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True)
        inference(sentences_path=sentences_path, output_path=output_path)

    print(f"Translation done.\n")
    with open(output_path, "r", encoding="utf-8") as f:
        return f.read()


# if __name__ == "__main__":
#     parser = argparse.ArgumentParser(description="Run the translation experiments")
#     input_group = parser.add_mutually_exclusive_group(required=True)
#     input_group.add_argument(
#         "--sentences_path",
#         default=None,
#         type=str,
#         help="Path to a txt file containing the sentences to translate. One sentence per line.",
#     )

#     input_group.add_argument(
#         "--sentences_dir",
#         type=str,
#         default=None,
#         help="Path to a directory containing the sentences to translate. "
#         "Sentences must be in  .txt files containing containing one sentence per line.",
#     )

#     parser.add_argument(
#         "--files_extension",
#         type=str,
#         default="txt",
#         help="If sentences_dir is specified, extension of the files to translate. Defaults to txt. "
#         "If set to an empty string, we will translate all files in the directory.",
#     )

#     parser.add_argument(
#         "--output_path",
#         type=str,
#         required=True,
#         help="Path to a txt file where the translated sentences will be written. If the input is a directory, "
#         "the output will be a directory with the same structure.",
#     )

#     parser.add_argument(
#         "--source_lang",
#         type=str,
#         default=None,
#         required=False,
#         help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
#     )

#     parser.add_argument(
#         "--target_lang",
#         type=str,
#         default=None,
#         required=False,
#         help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
#     )

#     parser.add_argument(
#         "--starting_batch_size",
#         type=int,
#         default=128,
#         help="Starting batch size, we will automatically reduce it if we find an OOM error."
#         "If you use multiple devices, we will divide this number by the number of devices.",
#     )

#     parser.add_argument(
#         "--model_name",
#         type=str,
#         default="facebook/m2m100_1.2B",
#         help="Path to the model to use. See: https://huggingface.co/models",
#     )

#     parser.add_argument(
#         "--lora_weights_name_or_path",
#         type=str,
#         default=None,
#         help="If the model uses LoRA weights, path to those weights. See: https://github.com/huggingface/peft",
#     )

#     parser.add_argument(
#         "--force_auto_device_map",
#         action="store_true",
#         help=" Whether to force the use of the auto device map. If set to True, "
#         "the model will be split across GPUs and CPU to fit the model in memory. "
#         "If set to False, a full copy of the model will be loaded  into each GPU. Defaults to False.",
#     )

#     parser.add_argument(
#         "--max_length",
#         type=int,
#         default=256,
#         help="Maximum number of tokens in the source sentence and generated sentence. "
#         "Increase this value to translate longer sentences, at the cost of increasing memory usage.",
#     )

#     parser.add_argument(
#         "--num_beams",
#         type=int,
#         default=5,
#         help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory",
#     )

#     parser.add_argument(
#         "--num_return_sequences",
#         type=int,
#         default=1,
#         help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).",
#     )

#     parser.add_argument(
#         "--precision",
#         type=str,
#         default=None,
#         choices=["bf16", "fp16", "32", "4", "8"],
#         help="Precision of the model. bf16, fp16 or 32, 8 , 4 "
#         "(4bits/8bits quantification, requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes). "
#         "If None, we will use the torch.dtype of the model weights.",
#     )

#     parser.add_argument(
#         "--do_sample",
#         action="store_true",
#         help="Use sampling instead of beam search.",
#     )

#     parser.add_argument(
#         "--temperature",
#         type=float,
#         default=0.8,
#         help="Temperature for sampling, value used only if do_sample is True.",
#     )

#     parser.add_argument(
#         "--top_k",
#         type=int,
#         default=100,
#         help="If do_sample is True, will sample from the top k most likely tokens.",
#     )

#     parser.add_argument(
#         "--top_p",
#         type=float,
#         default=0.75,
#         help="If do_sample is True, will sample from the top k most likely tokens.",
#     )

#     parser.add_argument(
#         "--keep_special_tokens",
#         action="store_true",
#         help="Keep special tokens in the decoded text.",
#     )

#     parser.add_argument(
#         "--keep_tokenization_spaces",
#         action="store_true",
#         help="Do not clean spaces in the decoded text.",
#     )

#     parser.add_argument(
#         "--repetition_penalty",
#         type=float,
#         default=None,
#         help="Repetition penalty.",
#     )

#     parser.add_argument(
#         "--prompt",
#         type=str,
#         default=None,
#         help="Prompt to use for generation. "
#         "It must include the special token %%SENTENCE%% which will be replaced by the sentence to translate.",
#     )

#     parser.add_argument(
#         "--trust_remote_code",
#         action="store_true",
#         help="If set we will trust remote code in HuggingFace models. This is required for some models.",
#     )

#     args = parser.parse_args()

#     main(
#         sentences_path=args.sentences_path,
#         sentences_dir=args.sentences_dir,
#         files_extension=args.files_extension,
#         output_path=args.output_path,
#         source_lang=args.source_lang,
#         target_lang=args.target_lang,
#         starting_batch_size=args.starting_batch_size,
#         model_name=args.model_name,
#         max_length=args.max_length,
#         num_beams=args.num_beams,
#         num_return_sequences=args.num_return_sequences,
#         precision=args.precision,
#         do_sample=args.do_sample,
#         temperature=args.temperature,
#         top_k=args.top_k,
#         top_p=args.top_p,
#         keep_special_tokens=args.keep_special_tokens,
#         keep_tokenization_spaces=args.keep_tokenization_spaces,
#         repetition_penalty=args.repetition_penalty,
#         prompt=args.prompt,
#         trust_remote_code=args.trust_remote_code,
#     )

demo = gradio.Interface(fn=main, inputs=["textbox", "textbox", "textbox", "textbox"], outputs="textbox")
demo.launch()