Spaces:
Running
Running
File size: 19,048 Bytes
5bd7f14 9dcafee 9c6ba11 5bd7f14 b873cb9 5bd7f14 d54a92e 5bd7f14 b873cb9 5bd7f14 d3132fd b873cb9 9dcafee b873cb9 f016c88 b873cb9 d54a92e b873cb9 9dcafee b873cb9 ee0f30d b873cb9 1e19e28 24fe65c 9dcafee 1e19e28 59dc238 d54a92e 9dcafee b873cb9 95d0c3a 5401d1a 086ac2b 2a897d7 390a692 d54a92e 9dcafee 1e19e28 d54a92e 24fe65c b873cb9 fbc4e83 d54a92e b873cb9 d54a92e b873cb9 d54a92e b873cb9 d54a92e 998d5ca d54a92e 9dcafee d54a92e 9dcafee d54a92e 9dcafee d54a92e 5401d1a d54a92e 911ab5a 1e19e28 9dcafee b873cb9 9dcafee b873cb9 95d0c3a 5401d1a b873cb9 1e19e28 390a692 9dcafee 02502dd 57ffa19 02502dd 911ab5a d54a92e 02502dd 774b679 02502dd d54a92e 02502dd d54a92e 2a897d7 02502dd 5401d1a 1e19e28 b873cb9 9dcafee 1e19e28 9dcafee 1e19e28 b873cb9 d54a92e b873cb9 749ff6d b873cb9 749ff6d 4db19c9 b873cb9 011cb1f 4db19c9 b873cb9 4db19c9 b873cb9 749ff6d b873cb9 d54a92e b873cb9 1e19e28 b873cb9 749ff6d b873cb9 1e19e28 b873cb9 2a897d7 b873cb9 4db19c9 5bd7f14 4db19c9 011cb1f 4db19c9 0f4f627 3d26fd2 f016c88 3d26fd2 0f4f627 1e19e28 a4abd95 b873cb9 9dcafee 1e19e28 2661eab 1e19e28 a0c5750 9c6ba11 59dc238 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import os
import math
import argparse
import glob
import gradio
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
PreTrainedTokenizerBase,
DataCollatorForSeq2Seq,
)
from model import load_model_for_inference
from dataset import DatasetReader, count_lines
from accelerate import Accelerator, DistributedType, find_executable_batch_size
from typing import Optional
def encode_string(text):
return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t")
def get_dataloader(
accelerator: Accelerator,
filename: str,
tokenizer: PreTrainedTokenizerBase,
batch_size: int,
max_length: int,
prompt: str,
) -> DataLoader:
dataset = DatasetReader(
filename=filename,
tokenizer=tokenizer,
max_length=max_length,
prompt=prompt,
)
if accelerator.distributed_type == DistributedType.TPU:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding="max_length",
max_length=max_length,
label_pad_token_id=tokenizer.pad_token_id,
return_tensors="pt",
)
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding=True,
label_pad_token_id=tokenizer.pad_token_id,
# max_length=max_length, No need to set max_length here, we already truncate in the preprocess function
pad_to_multiple_of=8,
return_tensors="pt",
)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=data_collator,
num_workers=0, # Disable multiprocessing
)
def main(
input_string: str,
source_lang: Optional[str],
target_lang: Optional[str],
model_name: str = "facebook/m2m100_1.2B",
starting_batch_size: int = 8,
lora_weights_name_or_path: str = None,
force_auto_device_map: bool = False,
precision: str = None,
max_length: int = 256,
num_beams: int = 4,
num_return_sequences: int = 1,
do_sample: bool = False,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0,
keep_special_tokens: bool = False,
keep_tokenization_spaces: bool = False,
repetition_penalty: float = None,
prompt: str = None,
trust_remote_code: bool = False,
):
accelerator = Accelerator()
sentences_path = "input.txt"
output_path = "output.txt"
with open(sentences_path, "w", encoding="utf-8") as f:
f.write(input_string)
if force_auto_device_map and starting_batch_size >= 64:
print(
f"WARNING: You are using a very large batch size ({starting_batch_size}) and the auto_device_map flag. "
f"auto_device_map will offload model parameters to the CPU when they don't fit on the GPU VRAM. "
f"If you use a very large batch size, it will offload a lot of parameters to the CPU and slow down the "
f"inference. You should consider using a smaller batch size, i.e '--starting_batch_size 8'"
)
if precision is None:
quantization = None
dtype = None
elif precision == "8" or precision == "4":
quantization = int(precision)
dtype = None
elif precision == "fp16":
quantization = None
dtype = "float16"
elif precision == "bf16":
quantization = None
dtype = "bfloat16"
elif precision == "32":
quantization = None
dtype = "float32"
else:
raise ValueError(
f"Precision {precision} not supported. Please choose between 8, 4, fp16, bf16, 32 or None."
)
model, tokenizer = load_model_for_inference(
weights_path=model_name,
quantization=quantization,
lora_weights_name_or_path=lora_weights_name_or_path,
torch_dtype=dtype,
force_auto_device_map=force_auto_device_map,
trust_remote_code=trust_remote_code,
)
is_translation_model = hasattr(tokenizer, "lang_code_to_id")
lang_code_to_idx = None
if (
is_translation_model
and (source_lang is None or target_lang is None)
and "small100" not in model_name
):
raise ValueError(
f"The model you are using requires a source and target language. "
f"Please specify them with --source-lang and --target-lang. "
f"The supported languages are: {tokenizer.lang_code_to_id.keys()}"
)
if not is_translation_model and (
source_lang is not None or target_lang is not None
):
if prompt is None:
print(
"WARNING: You are using a model that does not support source and target languages parameters "
"but you specified them. You probably want to use m2m100/nllb200 for translation or "
"set --prompt to define the task for you model. "
)
else:
print(
"WARNING: You are using a model that does not support source and target languages parameters "
"but you specified them."
)
if prompt is not None and "%%SENTENCE%%" not in prompt:
raise ValueError(
f"The prompt must contain the %%SENTENCE%% token to indicate where the sentence should be inserted. "
f"Your prompt: {prompt}"
)
if is_translation_model:
try:
_ = tokenizer.lang_code_to_id[source_lang]
except KeyError:
raise KeyError(
f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
)
tokenizer.src_lang = source_lang
try:
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
except KeyError:
raise KeyError(
f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
)
if "small100" in model_name:
tokenizer.tgt_lang = target_lang
# We don't need to force the BOS token, so we set is_translation_model to False
is_translation_model = False
if model.config.model_type == "seamless_m4t":
# Loading a seamless_m4t model, we need to set a few things to ensure compatibility
supported_langs = tokenizer.additional_special_tokens
supported_langs = [lang.replace("__", "") for lang in supported_langs]
if source_lang is None or target_lang is None:
raise ValueError(
f"The model you are using requires a source and target language. "
f"Please specify them with --source-lang and --target-lang. "
f"The supported languages are: {supported_langs}"
)
if source_lang not in supported_langs:
raise ValueError(
f"Language {source_lang} not found in tokenizer. Available languages: {supported_langs}"
)
if target_lang not in supported_langs:
raise ValueError(
f"Language {target_lang} not found in tokenizer. Available languages: {supported_langs}"
)
tokenizer.src_lang = source_lang
gen_kwargs = {
"max_new_tokens": max_length,
"num_beams": num_beams,
"num_return_sequences": num_return_sequences,
"do_sample": do_sample,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
}
if repetition_penalty is not None:
gen_kwargs["repetition_penalty"] = repetition_penalty
if is_translation_model:
gen_kwargs["forced_bos_token_id"] = lang_code_to_idx
if model.config.model_type == "seamless_m4t":
gen_kwargs["tgt_lang"] = target_lang
if accelerator.is_main_process:
print(
f"** Translation **\n"
f"Input file: {sentences_path}\n"
f"Output file: {output_path}\n"
f"Source language: {source_lang}\n"
f"Target language: {target_lang}\n"
f"Force target lang as BOS token: {is_translation_model}\n"
f"Prompt: {prompt}\n"
f"Starting batch size: {starting_batch_size}\n"
f"Device: {str(accelerator.device).split(':')[0]}\n"
f"Num. Devices: {accelerator.num_processes}\n"
f"Distributed_type: {accelerator.distributed_type}\n"
f"Max length: {max_length}\n"
f"Quantization: {quantization}\n"
f"Precision: {dtype}\n"
f"Model: {model_name}\n"
f"LoRA weights: {lora_weights_name_or_path}\n"
f"Force auto device map: {force_auto_device_map}\n"
f"Keep special tokens: {keep_special_tokens}\n"
f"Keep tokenization spaces: {keep_tokenization_spaces}\n"
)
print("** Generation parameters **")
print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items()))
print("\n")
@find_executable_batch_size(starting_batch_size=starting_batch_size)
def inference(batch_size, sentences_path, output_path):
nonlocal model, tokenizer, max_length, gen_kwargs, precision, prompt, is_translation_model
print(f"Translating {sentences_path} with batch size {batch_size}")
total_lines: int = count_lines(sentences_path)
data_loader = get_dataloader(
accelerator=accelerator,
filename=sentences_path,
tokenizer=tokenizer,
batch_size=batch_size,
max_length=max_length,
prompt=prompt,
)
model, data_loader = accelerator.prepare(model, data_loader)
samples_seen: int = 0
with tqdm(
total=total_lines,
desc="Dataset translation",
leave=True,
ascii=True,
disable=(not accelerator.is_main_process),
) as pbar, open(output_path, "w", encoding="utf-8") as output_file:
with torch.no_grad():
for step, batch in enumerate(data_loader):
batch["input_ids"] = batch["input_ids"]
batch["attention_mask"] = batch["attention_mask"]
generated_tokens = accelerator.unwrap_model(model).generate(
**batch,
**gen_kwargs,
)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens = (
accelerator.gather(generated_tokens).cpu().numpy()
)
tgt_text = tokenizer.batch_decode(
generated_tokens,
skip_special_tokens=not keep_special_tokens,
clean_up_tokenization_spaces=not keep_tokenization_spaces,
)
if accelerator.is_main_process:
if (
step
== math.ceil(
math.ceil(total_lines / batch_size)
/ accelerator.num_processes
)
- 1
):
tgt_text = tgt_text[
: (total_lines * num_return_sequences) - samples_seen
]
else:
samples_seen += len(tgt_text)
print(
"\n".join(
[encode_string(sentence) for sentence in tgt_text]
),
file=output_file,
)
pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"])
print(f"Translation done. Output written to {output_path}\n")
if sentences_path is not None:
os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True)
inference(sentences_path=sentences_path, output_path=output_path)
print(f"Translation done.\n")
with open(output_path, "r", encoding="utf-8") as f:
return f.read()
# if __name__ == "__main__":
# parser = argparse.ArgumentParser(description="Run the translation experiments")
# input_group = parser.add_mutually_exclusive_group(required=True)
# input_group.add_argument(
# "--sentences_path",
# default=None,
# type=str,
# help="Path to a txt file containing the sentences to translate. One sentence per line.",
# )
# input_group.add_argument(
# "--sentences_dir",
# type=str,
# default=None,
# help="Path to a directory containing the sentences to translate. "
# "Sentences must be in .txt files containing containing one sentence per line.",
# )
# parser.add_argument(
# "--files_extension",
# type=str,
# default="txt",
# help="If sentences_dir is specified, extension of the files to translate. Defaults to txt. "
# "If set to an empty string, we will translate all files in the directory.",
# )
# parser.add_argument(
# "--output_path",
# type=str,
# required=True,
# help="Path to a txt file where the translated sentences will be written. If the input is a directory, "
# "the output will be a directory with the same structure.",
# )
# parser.add_argument(
# "--source_lang",
# type=str,
# default=None,
# required=False,
# help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
# )
# parser.add_argument(
# "--target_lang",
# type=str,
# default=None,
# required=False,
# help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
# )
# parser.add_argument(
# "--starting_batch_size",
# type=int,
# default=128,
# help="Starting batch size, we will automatically reduce it if we find an OOM error."
# "If you use multiple devices, we will divide this number by the number of devices.",
# )
# parser.add_argument(
# "--model_name",
# type=str,
# default="facebook/m2m100_1.2B",
# help="Path to the model to use. See: https://huggingface.co/models",
# )
# parser.add_argument(
# "--lora_weights_name_or_path",
# type=str,
# default=None,
# help="If the model uses LoRA weights, path to those weights. See: https://github.com/huggingface/peft",
# )
# parser.add_argument(
# "--force_auto_device_map",
# action="store_true",
# help=" Whether to force the use of the auto device map. If set to True, "
# "the model will be split across GPUs and CPU to fit the model in memory. "
# "If set to False, a full copy of the model will be loaded into each GPU. Defaults to False.",
# )
# parser.add_argument(
# "--max_length",
# type=int,
# default=256,
# help="Maximum number of tokens in the source sentence and generated sentence. "
# "Increase this value to translate longer sentences, at the cost of increasing memory usage.",
# )
# parser.add_argument(
# "--num_beams",
# type=int,
# default=5,
# help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory",
# )
# parser.add_argument(
# "--num_return_sequences",
# type=int,
# default=1,
# help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).",
# )
# parser.add_argument(
# "--precision",
# type=str,
# default=None,
# choices=["bf16", "fp16", "32", "4", "8"],
# help="Precision of the model. bf16, fp16 or 32, 8 , 4 "
# "(4bits/8bits quantification, requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes). "
# "If None, we will use the torch.dtype of the model weights.",
# )
# parser.add_argument(
# "--do_sample",
# action="store_true",
# help="Use sampling instead of beam search.",
# )
# parser.add_argument(
# "--temperature",
# type=float,
# default=0.8,
# help="Temperature for sampling, value used only if do_sample is True.",
# )
# parser.add_argument(
# "--top_k",
# type=int,
# default=100,
# help="If do_sample is True, will sample from the top k most likely tokens.",
# )
# parser.add_argument(
# "--top_p",
# type=float,
# default=0.75,
# help="If do_sample is True, will sample from the top k most likely tokens.",
# )
# parser.add_argument(
# "--keep_special_tokens",
# action="store_true",
# help="Keep special tokens in the decoded text.",
# )
# parser.add_argument(
# "--keep_tokenization_spaces",
# action="store_true",
# help="Do not clean spaces in the decoded text.",
# )
# parser.add_argument(
# "--repetition_penalty",
# type=float,
# default=None,
# help="Repetition penalty.",
# )
# parser.add_argument(
# "--prompt",
# type=str,
# default=None,
# help="Prompt to use for generation. "
# "It must include the special token %%SENTENCE%% which will be replaced by the sentence to translate.",
# )
# parser.add_argument(
# "--trust_remote_code",
# action="store_true",
# help="If set we will trust remote code in HuggingFace models. This is required for some models.",
# )
# args = parser.parse_args()
# main(
# sentences_path=args.sentences_path,
# sentences_dir=args.sentences_dir,
# files_extension=args.files_extension,
# output_path=args.output_path,
# source_lang=args.source_lang,
# target_lang=args.target_lang,
# starting_batch_size=args.starting_batch_size,
# model_name=args.model_name,
# max_length=args.max_length,
# num_beams=args.num_beams,
# num_return_sequences=args.num_return_sequences,
# precision=args.precision,
# do_sample=args.do_sample,
# temperature=args.temperature,
# top_k=args.top_k,
# top_p=args.top_p,
# keep_special_tokens=args.keep_special_tokens,
# keep_tokenization_spaces=args.keep_tokenization_spaces,
# repetition_penalty=args.repetition_penalty,
# prompt=args.prompt,
# trust_remote_code=args.trust_remote_code,
# )
demo = gradio.Interface(fn=main, inputs=["textbox", "textbox", "textbox", "textbox"], outputs="textbox")
demo.launch()
|