Spaces:
Running
Running
File size: 7,378 Bytes
b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 749ff6d b873cb9 749ff6d b873cb9 62b1ca5 b873cb9 749ff6d b873cb9 1e19e28 b873cb9 749ff6d b873cb9 1e19e28 b873cb9 62b1ca5 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 b873cb9 1e19e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
from transformers import (
M2M100ForConditionalGeneration,
M2M100Tokenizer,
PreTrainedTokenizerBase,
DataCollatorForSeq2Seq,
)
from tqdm import tqdm
import argparse
import torch
from torch.utils.data import DataLoader
from dataset import DatasetReader, count_lines
import os
from accelerate import Accelerator, DistributedType
from accelerate.memory_utils import find_executable_batch_size
def get_dataloader(
accelerator: Accelerator,
filename: str,
tokenizer: PreTrainedTokenizerBase,
batch_size: int,
max_length: int,
) -> DataLoader:
dataset = DatasetReader(filename, tokenizer, max_length)
if accelerator.distributed_type == DistributedType.TPU:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding="max_length",
max_length=max_length,
label_pad_token_id=tokenizer.pad_token_id,
return_tensors="pt",
)
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding=True,
label_pad_token_id=tokenizer.pad_token_id,
# max_length=max_length, No need to set max_length here, we already truncate in the preprocess function
pad_to_multiple_of=8,
return_tensors="pt",
)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=data_collator,
)
def main(
sentences_path: str,
output_path: str,
source_lang: str,
target_lang: str,
starting_batch_size: int,
model_name: str = "facebook/m2m100_1.2B",
cache_dir: str = None,
precision: str = "32",
max_length: int = 128,
num_beams: int = 4,
):
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
accelerator = Accelerator(mixed_precision=precision if precision != "32" else "no")
print("Loading tokenizer...")
tokenizer = M2M100Tokenizer.from_pretrained(
pretrained_model_name_or_path=model_name, cache_dir=cache_dir
)
print("Loading model...")
model = M2M100ForConditionalGeneration.from_pretrained(
pretrained_model_name_or_path=model_name, cache_dir=cache_dir
)
model.eval()
print(f"Preparing data...\n")
if precision == "32":
model = model.float()
elif precision == "fp16":
model = model.half()
elif precision == "bf16":
model = model.bfloat16()
else:
raise ValueError("Precision not supported. Supported values: 32, fp16, bf16")
tokenizer.src_lang = source_lang
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
gen_kwargs = {
"max_length": max_length,
"num_beams": num_beams,
"num_return_sequences": 1,
}
total_lines: int = count_lines(sentences_path)
print(
f"We will translate {total_lines} lines. Initial batch size: {starting_batch_size}"
)
@find_executable_batch_size(starting_batch_size=starting_batch_size)
def inference(batch_size):
nonlocal model, tokenizer, sentences_path, max_length, output_path, lang_code_to_idx, gen_kwargs, total_lines, precision
print(f"Translating with batch size {batch_size}")
data_loader = get_dataloader(
accelerator=accelerator,
filename=sentences_path,
tokenizer=tokenizer,
batch_size=batch_size,
max_length=max_length,
)
model, data_loader = accelerator.prepare(model, data_loader)
with tqdm(
total=total_lines, desc="Dataset translation", leave=True, ascii=True
) as pbar, open(output_path, "w", encoding="utf-8") as output_file:
with torch.no_grad():
first_batch = True
for batch in data_loader:
batch["input_ids"] = batch["input_ids"]
batch["attention_mask"] = batch["attention_mask"]
generated_tokens = accelerator.unwrap_model(model).generate(
**batch, forced_bos_token_id=lang_code_to_idx, **gen_kwargs
)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens = (
accelerator.gather(generated_tokens).cpu().numpy()
)
tgt_text = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)
if not first_batch:
print(file=output_file)
else:
first_batch = False
print("\n".join(tgt_text), file=output_file, end="")
pbar.update(len(tgt_text))
inference()
print(f"Translation done.\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the translation experiments")
parser.add_argument(
"--sentences_path",
type=str,
required=True,
help="Path to a txt file containing the sentences to translate. One sentence per line.",
)
parser.add_argument(
"--output_path",
type=str,
required=True,
help="Path to a txt file where the translated sentences will be written.",
)
parser.add_argument(
"--source_lang",
type=str,
required=True,
help="Source language id. See: supported_languages.md",
)
parser.add_argument(
"--target_lang",
type=str,
required=True,
help="Target language id. See: supported_languages.md",
)
parser.add_argument(
"--starting_batch_size",
type=int,
default=128,
help="Starting batch size, we will automatically reduce it if we find an OOM error.",
)
parser.add_argument(
"--model_name",
type=str,
default="facebook/m2m100_1.2B",
help="Path to the model to use. See: https://huggingface.co/models",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Cache directory from which to load the model, or None to not cache",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help="Maximum number of tokens in the source sentence and generated sentence. "
"Increase this value to translate longer sentences, at the cost of increasing memory usage.",
)
parser.add_argument(
"--num_beams",
type=int,
default=5,
help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory",
)
parser.add_argument(
"--precision",
type=str,
default="32",
choices=["bf16", "fp16", "32"],
help="Precision of the model. bf16, fp16 or 32.",
)
args = parser.parse_args()
main(
sentences_path=args.sentences_path,
output_path=args.output_path,
source_lang=args.source_lang,
target_lang=args.target_lang,
starting_batch_size=args.starting_batch_size,
model_name=args.model_name,
cache_dir=args.cache_dir,
num_beams=args.num_beams,
precision=args.precision,
)
|