File size: 4,491 Bytes
ea2f505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from PIL import Image
import numpy as np
import gradio as gr
import spaces
import torch
from tqdm import tqdm

from controlnet import QRControlNet
from game_of_life import GameOfLife
from utils import resize_image, generate_image_from_grid


device = "cuda" if torch.cuda.is_available() else "cpu"
controlnet = QRControlNet(device=device)


def generate_all_images(
    gol_grids: list[np.array],
    source_image: Image,
    num_inference_steps: int,
    controlnet_conditioning_scale: float,
    strength: float,
    prompt: str,
    negative_prompt: str,
    seed: int,
    guidance_scale: float,
    img_size: int,
):

    controlnet_conditioning_scale = float(controlnet_conditioning_scale)
    source_image = resize_image(source_image, resolution=img_size)
    images = []
    for grid in tqdm(gol_grids):

        grid_inverse = 1 - grid  # invert the grid for controlnet
        grid_inverse_image = generate_image_from_grid(grid_inverse, img_size=img_size)

        image = controlnet.generate_image(
            source_image=source_image,
            control_image=grid_inverse_image,
            num_inference_steps=num_inference_steps,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            strength=strength,
            prompt=prompt,
            negative_prompt=negative_prompt,
            seed=seed,
            guidance_scale=guidance_scale,
            img_size=img_size,
        )
        images.append(image)

    return images


def make_gif(images: list[Image.Image], gif_path):
    images[0].save(
        gif_path,
        save_all=True,
        append_images=images[1:],
        duration=200,  # Duration between frames in milliseconds
        loop=0,
    )  # Loop forever
    return gif_path


@spaces.GPU
def generate(
    source_image,
    prompt,
    negative_prompt,
    seed,
    num_inference_steps,
    num_gol_steps,
    gol_grid_dim,
    img_size,
    controlnet_conditioning_scale,
    strength,
    guidance_scale,
):

    # Compute the Game of Life first
    gol = GameOfLife()
    gol.set_random_state(dim=(gol_grid_dim, gol_grid_dim), p=0.5, seed=seed)
    gol.generate_n_steps(n=num_gol_steps)

    gol_grids = gol.game_history

    # Generate the gif for the original Game of Life
    gol_images = [
        generate_image_from_grid(grid, img_size=img_size) for grid in gol_grids
    ]
    path_gol_gif = make_gif(gol_images, "gol_original.gif")

    # Generate the gif for the ControlNet Game of Life
    controlnet_images = generate_all_images(
        gol_grids=gol_grids,
        source_image=source_image,
        num_inference_steps=num_inference_steps,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        strength=strength,
        prompt=prompt,
        negative_prompt=negative_prompt,
        seed=seed,
        guidance_scale=guidance_scale,
        img_size=img_size,
    )

    path_gol_controlnet = make_gif(controlnet_images, "gol_controlnet.gif")

    return path_gol_controlnet, path_gol_gif


source_image = gr.Image(label="Source Image", type="pil", value="sky-gol-image.jpeg")

output_controlnet = gr.Image(label="ControlNet Game of Life")
output_gol = gr.Image(label="Original Game of Life")
prompt = gr.Textbox(
    label="Prompt", value="clear sky with clouds, high quality, background 4k"
)
negative_prompt = gr.Textbox(
    label="Negative Prompt",
    value="ugly, disfigured, low quality, blurry, nsfw, qr code",
)
seed = gr.Number(label="Seed", value=42)
num_inference_steps = gr.Number(label="Controlnet Inference Steps", value=50)
num_gol_steps = gr.Slider(
    label="Number of Game of Life Steps",
    minimum=2,
    maximum=100,
    step=1,
    value=40,
)
gol_grid_dim = gr.Number(
    label="Game of Life Grid Dimension",
    value=10,
)

img_size = gr.Number(label="Image Size (pixels)", value=512)
controlnet_conditioning_scale = gr.Slider(
    label="Controlnet Conditioning Scale", minimum=0.1, maximum=10.0, value=2.0
)
strength = gr.Slider(label="Strength", minimum=0.1, maximum=1.0, value=0.9)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1, maximum=100, value=20)


demo = gr.Interface(
    fn=generate,
    inputs=[
        source_image,
        prompt,
        negative_prompt,
        seed,
        num_inference_steps,
        num_gol_steps,
        gol_grid_dim,
        img_size,
        controlnet_conditioning_scale,
        strength,
        guidance_scale,
    ],
    outputs=[output_controlnet, output_gol],
)
demo.launch()