Spaces:
Runtime error
Runtime error
PR: DocumentsManager interface (#57)
Browse files- buster/chatbot.py +4 -13
- buster/docparser.py +10 -50
- buster/documents/__init__.py +6 -0
- buster/documents/base.py +30 -0
- buster/documents/pickle.py +38 -0
- buster/{db.py → documents/sqlite.py} +12 -7
- buster/documents/utils.py +23 -0
- tests/test_docparser.py +7 -9
- tests/{test_db.py → test_documents.py} +11 -8
buster/chatbot.py
CHANGED
|
@@ -9,7 +9,7 @@ import pandas as pd
|
|
| 9 |
import promptlayer
|
| 10 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 11 |
|
| 12 |
-
from buster.
|
| 13 |
from buster.formatter import Formatter, HTMLFormatter, MarkdownFormatter, SlackFormatter
|
| 14 |
from buster.formatter.base import Response, Source
|
| 15 |
|
|
@@ -47,7 +47,7 @@ class ChatbotConfig:
|
|
| 47 |
text_after_response: Generic response to add the the chatbot's reply.
|
| 48 |
"""
|
| 49 |
|
| 50 |
-
documents_file: str = "buster/data/document_embeddings.
|
| 51 |
embedding_model: str = "text-embedding-ada-002"
|
| 52 |
top_k: int = 3
|
| 53 |
thresh: float = 0.7
|
|
@@ -82,7 +82,7 @@ class Chatbot:
|
|
| 82 |
def _init_documents(self):
|
| 83 |
filepath = self.cfg.documents_file
|
| 84 |
logger.info(f"loading embeddings from {filepath}...")
|
| 85 |
-
self.documents =
|
| 86 |
logger.info(f"embeddings loaded.")
|
| 87 |
|
| 88 |
def _init_unk_embedding(self):
|
|
@@ -94,7 +94,6 @@ class Chatbot:
|
|
| 94 |
|
| 95 |
def rank_documents(
|
| 96 |
self,
|
| 97 |
-
documents: pd.DataFrame,
|
| 98 |
query: str,
|
| 99 |
top_k: float,
|
| 100 |
thresh: float,
|
|
@@ -108,14 +107,7 @@ class Chatbot:
|
|
| 108 |
query,
|
| 109 |
engine=engine,
|
| 110 |
)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# sort the matched_documents by score
|
| 114 |
-
matched_documents = documents.sort_values("similarity", ascending=False)
|
| 115 |
-
|
| 116 |
-
# limit search to top_k matched_documents.
|
| 117 |
-
top_k = len(matched_documents) if top_k == -1 else top_k
|
| 118 |
-
matched_documents = matched_documents.head(top_k)
|
| 119 |
|
| 120 |
# log matched_documents to the console
|
| 121 |
logger.info(f"matched documents before thresh: {matched_documents}")
|
|
@@ -236,7 +228,6 @@ class Chatbot:
|
|
| 236 |
question += "\n"
|
| 237 |
|
| 238 |
matched_documents = self.rank_documents(
|
| 239 |
-
documents=self.documents,
|
| 240 |
query=question,
|
| 241 |
top_k=self.cfg.top_k,
|
| 242 |
thresh=self.cfg.thresh,
|
|
|
|
| 9 |
import promptlayer
|
| 10 |
from openai.embeddings_utils import cosine_similarity, get_embedding
|
| 11 |
|
| 12 |
+
from buster.documents import get_documents_manager_from_extension
|
| 13 |
from buster.formatter import Formatter, HTMLFormatter, MarkdownFormatter, SlackFormatter
|
| 14 |
from buster.formatter.base import Response, Source
|
| 15 |
|
|
|
|
| 47 |
text_after_response: Generic response to add the the chatbot's reply.
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
documents_file: str = "buster/data/document_embeddings.tar.gz"
|
| 51 |
embedding_model: str = "text-embedding-ada-002"
|
| 52 |
top_k: int = 3
|
| 53 |
thresh: float = 0.7
|
|
|
|
| 82 |
def _init_documents(self):
|
| 83 |
filepath = self.cfg.documents_file
|
| 84 |
logger.info(f"loading embeddings from {filepath}...")
|
| 85 |
+
self.documents = get_documents_manager_from_extension(filepath)(filepath)
|
| 86 |
logger.info(f"embeddings loaded.")
|
| 87 |
|
| 88 |
def _init_unk_embedding(self):
|
|
|
|
| 94 |
|
| 95 |
def rank_documents(
|
| 96 |
self,
|
|
|
|
| 97 |
query: str,
|
| 98 |
top_k: float,
|
| 99 |
thresh: float,
|
|
|
|
| 107 |
query,
|
| 108 |
engine=engine,
|
| 109 |
)
|
| 110 |
+
matched_documents = self.documents.retrieve(query_embedding, top_k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
# log matched_documents to the console
|
| 113 |
logger.info(f"matched documents before thresh: {matched_documents}")
|
|
|
|
| 228 |
question += "\n"
|
| 229 |
|
| 230 |
matched_documents = self.rank_documents(
|
|
|
|
| 231 |
query=question,
|
| 232 |
top_k=self.cfg.top_k,
|
| 233 |
thresh=self.cfg.thresh,
|
buster/docparser.py
CHANGED
|
@@ -8,16 +8,13 @@ import tiktoken
|
|
| 8 |
from bs4 import BeautifulSoup
|
| 9 |
from openai.embeddings_utils import get_embedding
|
| 10 |
|
| 11 |
-
from buster.
|
| 12 |
from buster.parser import HuggingfaceParser, Parser, SphinxParser
|
| 13 |
|
| 14 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
| 15 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
| 16 |
|
| 17 |
|
| 18 |
-
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
|
| 19 |
-
|
| 20 |
-
|
| 21 |
supported_docs = {
|
| 22 |
"mila": {
|
| 23 |
"base_url": "https://docs.mila.quebec/",
|
|
@@ -77,46 +74,6 @@ def get_all_documents(
|
|
| 77 |
return documents_df
|
| 78 |
|
| 79 |
|
| 80 |
-
def get_file_extension(filepath: str) -> str:
|
| 81 |
-
return os.path.splitext(filepath)[1]
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
def write_documents(filepath: str, documents_df: pd.DataFrame, source: str = ""):
|
| 85 |
-
ext = get_file_extension(filepath)
|
| 86 |
-
|
| 87 |
-
if ext == ".csv":
|
| 88 |
-
documents_df.to_csv(filepath, index=False)
|
| 89 |
-
elif ext in PICKLE_EXTENSIONS:
|
| 90 |
-
documents_df.to_pickle(filepath)
|
| 91 |
-
elif ext == ".db":
|
| 92 |
-
db = DocumentsDB(filepath)
|
| 93 |
-
db.write_documents(source, documents_df)
|
| 94 |
-
else:
|
| 95 |
-
raise ValueError(f"Unsupported format: {ext}.")
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def read_documents(filepath: str, source: str = "") -> pd.DataFrame:
|
| 99 |
-
ext = get_file_extension(filepath)
|
| 100 |
-
|
| 101 |
-
if ext == ".csv":
|
| 102 |
-
df = pd.read_csv(filepath)
|
| 103 |
-
|
| 104 |
-
if "embedding" in df.columns:
|
| 105 |
-
df["embedding"] = df.embedding.apply(eval).apply(np.array)
|
| 106 |
-
elif ext in PICKLE_EXTENSIONS:
|
| 107 |
-
df = pd.read_pickle(filepath)
|
| 108 |
-
|
| 109 |
-
if "embedding" in df.columns:
|
| 110 |
-
df["embedding"] = df.embedding.apply(np.array)
|
| 111 |
-
elif ext == ".db":
|
| 112 |
-
db = DocumentsDB(filepath)
|
| 113 |
-
df = db.get_documents(source)
|
| 114 |
-
else:
|
| 115 |
-
raise ValueError(f"Unsupported format: {ext}.")
|
| 116 |
-
|
| 117 |
-
return df
|
| 118 |
-
|
| 119 |
-
|
| 120 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
| 121 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
| 122 |
# TODO are there unexpected consequences of allowing endoftext?
|
|
@@ -129,10 +86,13 @@ def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 129 |
return df
|
| 130 |
|
| 131 |
|
| 132 |
-
def generate_embeddings(
|
| 133 |
# Get all documents and precompute their embeddings
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from bs4 import BeautifulSoup
|
| 9 |
from openai.embeddings_utils import get_embedding
|
| 10 |
|
| 11 |
+
from buster.documents import get_documents_manager_from_extension
|
| 12 |
from buster.parser import HuggingfaceParser, Parser, SphinxParser
|
| 13 |
|
| 14 |
EMBEDDING_MODEL = "text-embedding-ada-002"
|
| 15 |
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
|
| 16 |
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
supported_docs = {
|
| 19 |
"mila": {
|
| 20 |
"base_url": "https://docs.mila.quebec/",
|
|
|
|
| 74 |
return documents_df
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
|
| 78 |
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
|
| 79 |
# TODO are there unexpected consequences of allowing endoftext?
|
|
|
|
| 86 |
return df
|
| 87 |
|
| 88 |
|
| 89 |
+
def generate_embeddings(root_dir: str, output_filepath: str, source: str) -> pd.DataFrame:
|
| 90 |
# Get all documents and precompute their embeddings
|
| 91 |
+
documents = get_all_documents(root_dir, supported_docs[source]["base_url"], supported_docs[source]["parser"])
|
| 92 |
+
documents = compute_n_tokens(documents)
|
| 93 |
+
documents = precompute_embeddings(documents)
|
| 94 |
+
|
| 95 |
+
documents_manager = get_documents_manager_from_extension(output_filepath)(output_filepath)
|
| 96 |
+
documents_manager.add(source, documents)
|
| 97 |
+
|
| 98 |
+
return documents
|
buster/documents/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .base import DocumentsManager
|
| 2 |
+
from .pickle import DocumentsPickle
|
| 3 |
+
from .sqlite import DocumentsDB
|
| 4 |
+
from .utils import get_documents_manager_from_extension
|
| 5 |
+
|
| 6 |
+
__all__ = [DocumentsManager, DocumentsPickle, DocumentsDB, get_documents_manager_from_extension]
|
buster/documents/base.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import ABC, abstractmethod
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from openai.embeddings_utils import cosine_similarity
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
@dataclass
|
| 9 |
+
class DocumentsManager(ABC):
|
| 10 |
+
@abstractmethod
|
| 11 |
+
def add(self, source: str, df: pd.DataFrame):
|
| 12 |
+
...
|
| 13 |
+
|
| 14 |
+
@abstractmethod
|
| 15 |
+
def get_documents(self, source: str) -> pd.DataFrame:
|
| 16 |
+
...
|
| 17 |
+
|
| 18 |
+
def retrieve(self, query_embedding: list[float], top_k: int, source: str = None) -> pd.DataFrame:
|
| 19 |
+
documents = self.get_documents(source)
|
| 20 |
+
|
| 21 |
+
documents["similarity"] = documents.embedding.apply(lambda x: cosine_similarity(x, query_embedding))
|
| 22 |
+
|
| 23 |
+
# sort the matched_documents by score
|
| 24 |
+
matched_documents = documents.sort_values("similarity", ascending=False)
|
| 25 |
+
|
| 26 |
+
# limit search to top_k matched_documents.
|
| 27 |
+
top_k = len(matched_documents) if top_k == -1 else top_k
|
| 28 |
+
matched_documents = matched_documents.head(top_k)
|
| 29 |
+
|
| 30 |
+
return matched_documents
|
buster/documents/pickle.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
from buster.documents.base import DocumentsManager
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class DocumentsPickle(DocumentsManager):
|
| 9 |
+
def __init__(self, filepath: str):
|
| 10 |
+
self.filepath = filepath
|
| 11 |
+
|
| 12 |
+
if os.path.exists(filepath):
|
| 13 |
+
self.documents = pd.read_pickle(filepath)
|
| 14 |
+
else:
|
| 15 |
+
self.documents = None
|
| 16 |
+
|
| 17 |
+
def add(self, source: str, df: pd.DataFrame):
|
| 18 |
+
if source is not None:
|
| 19 |
+
df["source"] = source
|
| 20 |
+
|
| 21 |
+
df["current"] = 1
|
| 22 |
+
|
| 23 |
+
if self.documents is not None:
|
| 24 |
+
self.documents.loc[self.documents.source == source, "current"] = 0
|
| 25 |
+
self.documents = pd.concat([self.documents, df])
|
| 26 |
+
else:
|
| 27 |
+
self.documents = df
|
| 28 |
+
|
| 29 |
+
self.documents.to_pickle(self.filepath)
|
| 30 |
+
|
| 31 |
+
def get_documents(self, source: str) -> pd.DataFrame:
|
| 32 |
+
documents = self.documents.copy()
|
| 33 |
+
documents = documents[documents.current == 1]
|
| 34 |
+
|
| 35 |
+
if source is not None and "source" in documents.columns:
|
| 36 |
+
documents = documents[documents.source == source]
|
| 37 |
+
|
| 38 |
+
return documents
|
buster/{db.py → documents/sqlite.py}
RENAMED
|
@@ -5,6 +5,8 @@ import zlib
|
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
|
|
|
|
|
|
|
| 8 |
documents_table = """CREATE TABLE IF NOT EXISTS documents (
|
| 9 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 10 |
source TEXT NOT NULL,
|
|
@@ -33,7 +35,7 @@ qa_table = """CREATE TABLE IF NOT EXISTS qa (
|
|
| 33 |
)"""
|
| 34 |
|
| 35 |
|
| 36 |
-
class DocumentsDB:
|
| 37 |
"""Simple SQLite database for storing documents and questions/answers.
|
| 38 |
|
| 39 |
The database is just a file on disk. It can store documents from different sources, and it can store multiple versions of the same document (e.g. if the document is updated).
|
|
@@ -41,13 +43,13 @@ class DocumentsDB:
|
|
| 41 |
|
| 42 |
Example:
|
| 43 |
>>> db = DocumentsDB("/path/to/the/db.db")
|
| 44 |
-
>>> db.
|
| 45 |
>>> df = db.get_documents("source")
|
| 46 |
"""
|
| 47 |
|
| 48 |
-
def __init__(self,
|
| 49 |
-
self.db_path =
|
| 50 |
-
self.conn = sqlite3.connect(
|
| 51 |
self.cursor = self.conn.cursor()
|
| 52 |
|
| 53 |
self.__initialize()
|
|
@@ -61,7 +63,7 @@ class DocumentsDB:
|
|
| 61 |
self.cursor.execute(qa_table)
|
| 62 |
self.conn.commit()
|
| 63 |
|
| 64 |
-
def
|
| 65 |
"""Write all documents from the dataframe into the db. All previous documents from that source will be set to `current = 0`."""
|
| 66 |
df = df.copy()
|
| 67 |
|
|
@@ -102,7 +104,10 @@ class DocumentsDB:
|
|
| 102 |
def get_documents(self, source: str) -> pd.DataFrame:
|
| 103 |
"""Get all current documents from a given source."""
|
| 104 |
# Execute the SQL statement and fetch the results
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
rows = results.fetchall()
|
| 107 |
|
| 108 |
# Convert the results to a pandas DataFrame
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
+
from buster.documents.base import DocumentsManager
|
| 9 |
+
|
| 10 |
documents_table = """CREATE TABLE IF NOT EXISTS documents (
|
| 11 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 12 |
source TEXT NOT NULL,
|
|
|
|
| 35 |
)"""
|
| 36 |
|
| 37 |
|
| 38 |
+
class DocumentsDB(DocumentsManager):
|
| 39 |
"""Simple SQLite database for storing documents and questions/answers.
|
| 40 |
|
| 41 |
The database is just a file on disk. It can store documents from different sources, and it can store multiple versions of the same document (e.g. if the document is updated).
|
|
|
|
| 43 |
|
| 44 |
Example:
|
| 45 |
>>> db = DocumentsDB("/path/to/the/db.db")
|
| 46 |
+
>>> db.add("source", df) # df is a DataFrame containing the documents from a given source, obtained e.g. by using buster.docparser.generate_embeddings
|
| 47 |
>>> df = db.get_documents("source")
|
| 48 |
"""
|
| 49 |
|
| 50 |
+
def __init__(self, filepath: str):
|
| 51 |
+
self.db_path = filepath
|
| 52 |
+
self.conn = sqlite3.connect(filepath)
|
| 53 |
self.cursor = self.conn.cursor()
|
| 54 |
|
| 55 |
self.__initialize()
|
|
|
|
| 63 |
self.cursor.execute(qa_table)
|
| 64 |
self.conn.commit()
|
| 65 |
|
| 66 |
+
def add(self, source: str, df: pd.DataFrame):
|
| 67 |
"""Write all documents from the dataframe into the db. All previous documents from that source will be set to `current = 0`."""
|
| 68 |
df = df.copy()
|
| 69 |
|
|
|
|
| 104 |
def get_documents(self, source: str) -> pd.DataFrame:
|
| 105 |
"""Get all current documents from a given source."""
|
| 106 |
# Execute the SQL statement and fetch the results
|
| 107 |
+
if source is not None:
|
| 108 |
+
results = self.cursor.execute("SELECT * FROM documents WHERE source = ? AND current = 1", (source,))
|
| 109 |
+
else:
|
| 110 |
+
results = self.cursor.execute("SELECT * FROM documents WHERE current = 1")
|
| 111 |
rows = results.fetchall()
|
| 112 |
|
| 113 |
# Convert the results to a pandas DataFrame
|
buster/documents/utils.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Type
|
| 3 |
+
|
| 4 |
+
from buster.documents.base import DocumentsManager
|
| 5 |
+
from buster.documents.pickle import DocumentsPickle
|
| 6 |
+
from buster.documents.sqlite import DocumentsDB
|
| 7 |
+
|
| 8 |
+
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def get_file_extension(filepath: str) -> str:
|
| 12 |
+
return os.path.splitext(filepath)[1]
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_documents_manager_from_extension(filepath: str) -> Type[DocumentsManager]:
|
| 16 |
+
ext = get_file_extension(filepath)
|
| 17 |
+
|
| 18 |
+
if ext in PICKLE_EXTENSIONS:
|
| 19 |
+
return DocumentsPickle
|
| 20 |
+
elif ext == ".db":
|
| 21 |
+
return DocumentsDB
|
| 22 |
+
else:
|
| 23 |
+
raise ValueError(f"Unsupported format: {ext}.")
|
tests/test_docparser.py
CHANGED
|
@@ -1,26 +1,24 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
-
from buster.docparser import generate_embeddings
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
def test_generate_embeddings(tmp_path, monkeypatch):
|
| 8 |
-
# Patch the get_embedding function to return a fixed embedding
|
| 9 |
-
monkeypatch.setattr("buster.docparser.get_embedding", lambda x, engine: [-0.005, 0.0018])
|
| 10 |
-
|
| 11 |
# Create fake data
|
| 12 |
data = pd.DataFrame.from_dict({"title": ["test"], "url": ["http://url.com"], "content": ["cool text"]})
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
# Generate embeddings, store in a file
|
| 19 |
output_file = tmp_path / "test_document_embeddings.tar.gz"
|
| 20 |
-
df = generate_embeddings(
|
| 21 |
|
| 22 |
# Read the embeddings from the file
|
| 23 |
-
read_df =
|
| 24 |
|
| 25 |
# Check all the values are correct across the files
|
| 26 |
assert df["title"].iloc[0] == data["title"].iloc[0] == read_df["title"].iloc[0]
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
|
| 4 |
+
from buster.docparser import generate_embeddings
|
| 5 |
+
from buster.documents import get_documents_manager_from_extension
|
| 6 |
|
| 7 |
|
| 8 |
def test_generate_embeddings(tmp_path, monkeypatch):
|
|
|
|
|
|
|
|
|
|
| 9 |
# Create fake data
|
| 10 |
data = pd.DataFrame.from_dict({"title": ["test"], "url": ["http://url.com"], "content": ["cool text"]})
|
| 11 |
|
| 12 |
+
# Patch the get_embedding function to return a fixed embedding
|
| 13 |
+
monkeypatch.setattr("buster.docparser.get_embedding", lambda x, engine: [-0.005, 0.0018])
|
| 14 |
+
monkeypatch.setattr("buster.docparser.get_all_documents", lambda a, b, c: data)
|
| 15 |
|
| 16 |
# Generate embeddings, store in a file
|
| 17 |
output_file = tmp_path / "test_document_embeddings.tar.gz"
|
| 18 |
+
df = generate_embeddings(tmp_path, output_file, source="mila")
|
| 19 |
|
| 20 |
# Read the embeddings from the file
|
| 21 |
+
read_df = get_documents_manager_from_extension(output_file)(output_file).get_documents("mila")
|
| 22 |
|
| 23 |
# Check all the values are correct across the files
|
| 24 |
assert df["title"].iloc[0] == data["title"].iloc[0] == read_df["title"].iloc[0]
|
tests/{test_db.py → test_documents.py}
RENAMED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
|
| 4 |
-
from buster.
|
| 5 |
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
data = pd.DataFrame.from_dict(
|
| 11 |
{
|
|
@@ -16,7 +18,7 @@ def test_write_read():
|
|
| 16 |
"n_tokens": [10],
|
| 17 |
}
|
| 18 |
)
|
| 19 |
-
db.
|
| 20 |
|
| 21 |
db_data = db.get_documents("test")
|
| 22 |
|
|
@@ -27,8 +29,9 @@ def test_write_read():
|
|
| 27 |
assert db_data["n_tokens"].iloc[0] == data["n_tokens"].iloc[0]
|
| 28 |
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
| 32 |
|
| 33 |
data_1 = pd.DataFrame.from_dict(
|
| 34 |
{
|
|
@@ -39,7 +42,7 @@ def test_write_write_read():
|
|
| 39 |
"n_tokens": [10],
|
| 40 |
}
|
| 41 |
)
|
| 42 |
-
db.
|
| 43 |
|
| 44 |
data_2 = pd.DataFrame.from_dict(
|
| 45 |
{
|
|
@@ -50,7 +53,7 @@ def test_write_write_read():
|
|
| 50 |
"n_tokens": [20],
|
| 51 |
}
|
| 52 |
)
|
| 53 |
-
db.
|
| 54 |
|
| 55 |
db_data = db.get_documents("test")
|
| 56 |
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
+
import pytest
|
| 4 |
|
| 5 |
+
from buster.documents import DocumentsDB, DocumentsPickle
|
| 6 |
|
| 7 |
|
| 8 |
+
@pytest.mark.parametrize("documents_manager, extension", [(DocumentsDB, "db"), (DocumentsPickle, "tar.gz")])
|
| 9 |
+
def test_write_read(tmp_path, documents_manager, extension):
|
| 10 |
+
db = documents_manager(tmp_path / f"test.{extension}")
|
| 11 |
|
| 12 |
data = pd.DataFrame.from_dict(
|
| 13 |
{
|
|
|
|
| 18 |
"n_tokens": [10],
|
| 19 |
}
|
| 20 |
)
|
| 21 |
+
db.add(source="test", df=data)
|
| 22 |
|
| 23 |
db_data = db.get_documents("test")
|
| 24 |
|
|
|
|
| 29 |
assert db_data["n_tokens"].iloc[0] == data["n_tokens"].iloc[0]
|
| 30 |
|
| 31 |
|
| 32 |
+
@pytest.mark.parametrize("documents_manager, extension", [(DocumentsDB, "db"), (DocumentsPickle, "tar.gz")])
|
| 33 |
+
def test_write_write_read(tmp_path, documents_manager, extension):
|
| 34 |
+
db = documents_manager(tmp_path / f"test.{extension}")
|
| 35 |
|
| 36 |
data_1 = pd.DataFrame.from_dict(
|
| 37 |
{
|
|
|
|
| 42 |
"n_tokens": [10],
|
| 43 |
}
|
| 44 |
)
|
| 45 |
+
db.add(source="test", df=data_1)
|
| 46 |
|
| 47 |
data_2 = pd.DataFrame.from_dict(
|
| 48 |
{
|
|
|
|
| 53 |
"n_tokens": [20],
|
| 54 |
}
|
| 55 |
)
|
| 56 |
+
db.add(source="test", df=data_2)
|
| 57 |
|
| 58 |
db_data = db.get_documents("test")
|
| 59 |
|