Spaces:
Runtime error
Runtime error
import logging | |
from typing import Optional, Tuple | |
import gradio as gr | |
import pandas as pd | |
from buster.completers import Completion | |
from buster.utils import extract_zip | |
import cfg | |
from cfg import setup_buster | |
# Create a handler to control where log messages go (e.g., console, file) | |
handler = ( | |
logging.StreamHandler() | |
) # Console output, you can change it to a file handler if needed | |
# Set the handler's level to INFO | |
handler.setLevel(logging.INFO) | |
logging.basicConfig(level=logging.INFO) | |
# Typehint for chatbot history | |
ChatHistory = list[list[Optional[str], Optional[str]]] | |
buster = setup_buster(cfg.buster_cfg) | |
def add_user_question( | |
user_question: str, chat_history: Optional[ChatHistory] = None | |
) -> ChatHistory: | |
"""Adds a user's question to the chat history. | |
If no history is provided, the first element of the history will be the user conversation. | |
""" | |
if chat_history is None: | |
chat_history = [] | |
chat_history.append([user_question, None]) | |
return chat_history | |
def format_sources(matched_documents: pd.DataFrame) -> str: | |
if len(matched_documents) == 0: | |
return "" | |
matched_documents.similarity_to_answer = ( | |
matched_documents.similarity_to_answer * 100 | |
) | |
# drop duplicate pages (by title), keep highest ranking ones | |
matched_documents = matched_documents.sort_values( | |
"similarity_to_answer", ascending=False | |
).drop_duplicates("title", keep="first") | |
documents_answer_template: str = "π Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}" | |
document_template: str = "[π {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %" | |
documents = "\n".join( | |
[ | |
document_template.format(document=document) | |
for _, document in matched_documents.iterrows() | |
] | |
) | |
footnote: str = "I'm a bot π€ and not always perfect." | |
return documents_answer_template.format(documents=documents, footnote=footnote) | |
def add_sources(history, completion): | |
if completion.answer_relevant: | |
formatted_sources = format_sources(completion.matched_documents) | |
history.append([None, formatted_sources]) | |
return history | |
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]: | |
"""Answer a user's question using retrieval augmented generation.""" | |
# We assume that the question is the user's last interaction | |
user_input = chat_history[-1][0] | |
# Do retrieval + augmented generation with buster | |
completion = buster.process_input(user_input) | |
# Stream tokens one at a time to the user | |
chat_history[-1][1] = "" | |
for token in completion.answer_generator: | |
chat_history[-1][1] += token | |
yield chat_history, completion | |
demo = gr.Blocks() | |
with demo: | |
with gr.Row(): | |
gr.Markdown("<h3><center>RAGTheDocs</center></h3>") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
question = gr.Textbox( | |
label="What's your question?", | |
placeholder="Type your question here...", | |
lines=1, | |
) | |
submit = gr.Button(value="Send", variant="secondary") | |
examples = gr.Examples( | |
examples=[ | |
"How can I install the library?", | |
"What dependencies are required?", | |
], | |
inputs=question, | |
) | |
gr.Markdown( | |
"This app uses [Buster π€](github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and answer questions." | |
) | |
response = gr.State() | |
# fmt: off | |
gr.on( | |
triggers=[submit.click, question.submit], | |
fn=add_user_question, | |
inputs=[question], | |
outputs=[chatbot] | |
).then( | |
chat, | |
inputs=[chatbot], | |
outputs=[chatbot, response] | |
).then( | |
add_sources, | |
inputs=[chatbot, response], | |
outputs=[chatbot] | |
) | |
demo.queue(concurrency_count=16) | |
demo.launch(share=False) | |