Update app.py
Browse files
app.py
CHANGED
@@ -13,10 +13,10 @@ from langchain.chains import create_retrieval_chain
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
-
# Retrieve API keys from
|
17 |
-
openai_api_key = os.
|
18 |
-
groq_api_key = os.
|
19 |
-
google_api_key = os.
|
20 |
|
21 |
# Initialize API clients with the API keys
|
22 |
openai_client = ChatOpenAI(model_name="gpt-4o", api_key=openai_api_key)
|
@@ -25,7 +25,11 @@ gemini_client = ChatGoogleGenerativeAI(model="gemini-1.5-pro", api_key=google_ap
|
|
25 |
|
26 |
# Function to extract text from PDF
|
27 |
def extract_pdf(pdf_path):
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Function to split text into chunks
|
31 |
def split_text(text):
|
@@ -37,33 +41,29 @@ def generate_embeddings(docs):
|
|
37 |
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
38 |
return FAISS.from_documents(docs, embeddings)
|
39 |
|
40 |
-
# Function for query preprocessing
|
41 |
def preprocess_query(query):
|
42 |
prompt = ChatPromptTemplate.from_template("""
|
43 |
-
|
44 |
-
Transform the query into a more affirmative, keyword-focused statement.
|
45 |
-
The transformed query should look like probable related passages in the official documents.
|
46 |
-
|
47 |
Query: {query}
|
48 |
-
|
49 |
-
Optimized query:
|
50 |
""")
|
51 |
chain = prompt | openai_client
|
52 |
return chain.invoke({"query": query}).content
|
53 |
|
54 |
# Function to create RAG chain with Groq
|
55 |
-
def create_rag_chain():
|
56 |
prompt = ChatPromptTemplate.from_messages([
|
57 |
-
("system", "You are an AI assistant helping with data protection related queries. Use the following context
|
58 |
("human", "{input}")
|
59 |
])
|
60 |
document_chain = create_stuff_documents_chain(groq_client, prompt)
|
61 |
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
|
62 |
|
63 |
# Function for Gemini response with long context
|
64 |
-
def gemini_response(query):
|
65 |
prompt = ChatPromptTemplate.from_messages([
|
66 |
-
("system", "You are an AI assistant helping with data protection related queries
|
67 |
("human", "{input}")
|
68 |
])
|
69 |
chain = prompt | gemini_client
|
@@ -72,35 +72,39 @@ def gemini_response(query):
|
|
72 |
# Function to generate final response
|
73 |
def generate_final_response(query, response1, response2):
|
74 |
prompt = ChatPromptTemplate.from_template("""
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
""")
|
85 |
chain = prompt | openai_client
|
86 |
return chain.invoke({"query": query, "response1": response1, "response2": response2}).content
|
87 |
|
88 |
# Function to process the query
|
89 |
def process_query(user_query):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
# Initialize
|
106 |
pdf_paths = ["GDPR.pdf", "FERPA.pdf", "COPPA.pdf"]
|
@@ -113,12 +117,8 @@ for pdf_path in pdf_paths:
|
|
113 |
all_documents.extend(split_text(extracted_text))
|
114 |
|
115 |
vector_store = generate_embeddings(all_documents)
|
116 |
-
rag_chain = create_rag_chain()
|
117 |
|
118 |
-
# Function to output the final response as markdown
|
119 |
-
def markdown_to_html(content):
|
120 |
-
return markdown2.markdown(content)
|
121 |
-
|
122 |
# Gradio interface
|
123 |
iface = gr.Interface(
|
124 |
fn=process_query,
|
@@ -133,4 +133,5 @@ iface = gr.Interface(
|
|
133 |
allow_flagging="never"
|
134 |
)
|
135 |
|
|
|
136 |
iface.launch()
|
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
+
# Retrieve API keys from Hugging Face Spaces secrets
|
17 |
+
openai_api_key = os.environ.get('OPENAI_API_KEY')
|
18 |
+
groq_api_key = os.environ.get('GROQ_API_KEY')
|
19 |
+
google_api_key = os.environ.get('GEMINI_API_KEY')
|
20 |
|
21 |
# Initialize API clients with the API keys
|
22 |
openai_client = ChatOpenAI(model_name="gpt-4o", api_key=openai_api_key)
|
|
|
25 |
|
26 |
# Function to extract text from PDF
|
27 |
def extract_pdf(pdf_path):
|
28 |
+
try:
|
29 |
+
return extract_text(pdf_path)
|
30 |
+
except Exception as e:
|
31 |
+
print(f"Error extracting text from {pdf_path}: {str(e)}")
|
32 |
+
return ""
|
33 |
|
34 |
# Function to split text into chunks
|
35 |
def split_text(text):
|
|
|
41 |
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
|
42 |
return FAISS.from_documents(docs, embeddings)
|
43 |
|
44 |
+
# Function for query preprocessing
|
45 |
def preprocess_query(query):
|
46 |
prompt = ChatPromptTemplate.from_template("""
|
47 |
+
Transform the following query into a more detailed, keyword-rich statement that could appear in official data protection regulation documents:
|
|
|
|
|
|
|
48 |
Query: {query}
|
49 |
+
Transformed query:
|
|
|
50 |
""")
|
51 |
chain = prompt | openai_client
|
52 |
return chain.invoke({"query": query}).content
|
53 |
|
54 |
# Function to create RAG chain with Groq
|
55 |
+
def create_rag_chain(vector_store):
|
56 |
prompt = ChatPromptTemplate.from_messages([
|
57 |
+
("system", "You are an AI assistant helping with data protection and regulation compliance related queries. Use the following context to answer the user's question:\n\n{context}"),
|
58 |
("human", "{input}")
|
59 |
])
|
60 |
document_chain = create_stuff_documents_chain(groq_client, prompt)
|
61 |
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
|
62 |
|
63 |
# Function for Gemini response with long context
|
64 |
+
def gemini_response(query, full_pdf_content):
|
65 |
prompt = ChatPromptTemplate.from_messages([
|
66 |
+
("system", "You are an AI assistant helping with data protection and regulation compliance related queries.. Use the following full content of official regulation documents to answer the user's question:\n\n{context}"),
|
67 |
("human", "{input}")
|
68 |
])
|
69 |
chain = prompt | gemini_client
|
|
|
72 |
# Function to generate final response
|
73 |
def generate_final_response(query, response1, response2):
|
74 |
prompt = ChatPromptTemplate.from_template("""
|
75 |
+
As an AI assistant specializing in data protection and compliance for educators:
|
76 |
+
1. Analyze the following two AI-generated responses to the user query.
|
77 |
+
2. Synthesize a comprehensive answer that combines the strengths of both responses.
|
78 |
+
3. If the responses contradict each other, highlight this and explain potential reasons.
|
79 |
+
4. Provide practical advice on how to meet regulatory requirements in the context of the user question based on the information given.
|
80 |
+
|
81 |
+
User Query: {query}
|
82 |
+
|
83 |
+
Response 1: {response1}
|
84 |
+
|
85 |
+
Response 2: {response2}
|
86 |
+
|
87 |
+
Your synthesized response:
|
88 |
""")
|
89 |
chain = prompt | openai_client
|
90 |
return chain.invoke({"query": query, "response1": response1, "response2": response2}).content
|
91 |
|
92 |
# Function to process the query
|
93 |
def process_query(user_query):
|
94 |
+
try:
|
95 |
+
preprocessed_query = preprocess_query(user_query)
|
96 |
+
print(f"Original query: {user_query}")
|
97 |
+
print(f"Preprocessed query: {preprocessed_query}")
|
98 |
+
|
99 |
+
rag_response = rag_chain.invoke({"input": preprocessed_query})["answer"]
|
100 |
+
gemini_resp = gemini_response(preprocessed_query, full_pdf_content)
|
101 |
+
final_response = generate_final_response(user_query, rag_response, gemini_resp)
|
102 |
+
html_content = markdown2.markdown(final_response)
|
103 |
+
|
104 |
+
return rag_response, gemini_resp, html_content
|
105 |
+
except Exception as e:
|
106 |
+
error_message = f"An error occurred: {str(e)}"
|
107 |
+
return error_message, error_message, error_message
|
108 |
|
109 |
# Initialize
|
110 |
pdf_paths = ["GDPR.pdf", "FERPA.pdf", "COPPA.pdf"]
|
|
|
117 |
all_documents.extend(split_text(extracted_text))
|
118 |
|
119 |
vector_store = generate_embeddings(all_documents)
|
120 |
+
rag_chain = create_rag_chain(vector_store)
|
121 |
|
|
|
|
|
|
|
|
|
122 |
# Gradio interface
|
123 |
iface = gr.Interface(
|
124 |
fn=process_query,
|
|
|
133 |
allow_flagging="never"
|
134 |
)
|
135 |
|
136 |
+
# Launch the interface
|
137 |
iface.launch()
|