Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from langchain.chains import create_retrieval_chain
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
-
# Retrieve API keys from
|
17 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
18 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
19 |
google_api_key = os.getenv('GEMINI_API_KEY')
|
@@ -36,53 +36,6 @@ vector_store = None
|
|
36 |
rag_chain = None
|
37 |
pdfs_loaded = False
|
38 |
|
39 |
-
# Function to load regulations with checked boxes or uploaded
|
40 |
-
def load_pdfs(selected_regulations, additional_pdfs):
|
41 |
-
global full_pdf_content, vector_store, rag_chain, pdfs_loaded
|
42 |
-
|
43 |
-
documents = []
|
44 |
-
full_pdf_content = ""
|
45 |
-
|
46 |
-
print(f"Selected regulations: {selected_regulations}") # Debug print
|
47 |
-
|
48 |
-
for regulation in selected_regulations:
|
49 |
-
if regulation in regulation_pdfs:
|
50 |
-
pdf_path = regulation_pdfs[regulation]
|
51 |
-
if os.path.exists(pdf_path):
|
52 |
-
pdf_content = extract_pdf(pdf_path)
|
53 |
-
if pdf_content:
|
54 |
-
full_pdf_content += pdf_content + "\n\n"
|
55 |
-
documents.extend(split_text(pdf_content))
|
56 |
-
print(f"Loaded {regulation} PDF")
|
57 |
-
else:
|
58 |
-
print(f"Failed to extract content from {regulation} PDF")
|
59 |
-
else:
|
60 |
-
print(f"PDF file for {regulation} not found at {pdf_path}")
|
61 |
-
|
62 |
-
# Load additional user-uploaded PDFs
|
63 |
-
if additional_pdfs is not None:
|
64 |
-
for pdf_file in additional_pdfs:
|
65 |
-
pdf_content = extract_pdf(pdf_file.name)
|
66 |
-
if pdf_content:
|
67 |
-
full_pdf_content += pdf_content + "\n\n"
|
68 |
-
documents.extend(split_text(pdf_content))
|
69 |
-
print(f"Loaded additional PDF: {pdf_file.name}")
|
70 |
-
else:
|
71 |
-
print(f"Failed to extract content from uploaded PDF: {pdf_file.name}")
|
72 |
-
|
73 |
-
if not documents:
|
74 |
-
pdfs_loaded = False
|
75 |
-
return "No PDFs were successfully loaded. Please check your selections and uploads."
|
76 |
-
|
77 |
-
print(f"Total documents loaded: {len(documents)}")
|
78 |
-
print(f"Total content length: {len(full_pdf_content)} characters")
|
79 |
-
|
80 |
-
vector_store = generate_embeddings(documents)
|
81 |
-
rag_chain = create_rag_chain(vector_store)
|
82 |
-
|
83 |
-
pdfs_loaded = True
|
84 |
-
return f"PDFs loaded and RAG system updated successfully! Loaded {len(documents)} document chunks."
|
85 |
-
|
86 |
# Function to extract text from PDF
|
87 |
def extract_pdf(pdf_path):
|
88 |
try:
|
@@ -146,7 +99,62 @@ def generate_final_response(response1, response2):
|
|
146 |
chain = prompt | openai_client
|
147 |
return chain.invoke({"response1": response1, "response2": response2}).content
|
148 |
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
def process_query(user_query):
|
151 |
global rag_chain, full_pdf_content, pdfs_loaded
|
152 |
|
@@ -168,19 +176,15 @@ def process_query(user_query):
|
|
168 |
|
169 |
return rag_response, gemini_resp, html_content
|
170 |
|
171 |
-
# Function to output the final response as markdown
|
172 |
-
def markdown_to_html(content):
|
173 |
-
return markdown2.markdown(content)
|
174 |
-
|
175 |
# Gradio interface
|
176 |
with gr.Blocks() as iface:
|
177 |
gr.Markdown("# Data Protection Team")
|
178 |
gr.Markdown("Get responses combining advanced RAG, Long Context, and SOTA models to data protection related questions.")
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
label="
|
183 |
-
|
184 |
|
185 |
gr.Markdown("**Optional: upload additional PDFs if needed (national regulation, school policy)**")
|
186 |
additional_pdfs = gr.File(
|
@@ -202,12 +206,14 @@ with gr.Blocks() as iface:
|
|
202 |
gemini_output = gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response")
|
203 |
final_output = gr.HTML(label="Final (GPT-4o) Response")
|
204 |
|
205 |
-
def prepare_regulations(selected):
|
206 |
-
return [reg.split()[0] for reg in selected]
|
207 |
-
|
208 |
load_button.click(
|
209 |
-
|
210 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
211 |
outputs=load_output
|
212 |
)
|
213 |
|
@@ -217,4 +223,4 @@ with gr.Blocks() as iface:
|
|
217 |
outputs=[rag_output, gemini_output, final_output]
|
218 |
)
|
219 |
|
220 |
-
iface.launch()
|
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
+
# Retrieve API keys from environment variables
|
17 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
18 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
19 |
google_api_key = os.getenv('GEMINI_API_KEY')
|
|
|
36 |
rag_chain = None
|
37 |
pdfs_loaded = False
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Function to extract text from PDF
|
40 |
def extract_pdf(pdf_path):
|
41 |
try:
|
|
|
99 |
chain = prompt | openai_client
|
100 |
return chain.invoke({"response1": response1, "response2": response2}).content
|
101 |
|
102 |
+
def markdown_to_html(content):
|
103 |
+
return markdown2.markdown(content)
|
104 |
+
|
105 |
+
def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
|
106 |
+
global full_pdf_content, vector_store, rag_chain, pdfs_loaded
|
107 |
+
|
108 |
+
documents = []
|
109 |
+
full_pdf_content = ""
|
110 |
+
|
111 |
+
# Load selected regulation PDFs
|
112 |
+
selected_regulations = []
|
113 |
+
if gdpr:
|
114 |
+
selected_regulations.append("GDPR")
|
115 |
+
if ferpa:
|
116 |
+
selected_regulations.append("FERPA")
|
117 |
+
if coppa:
|
118 |
+
selected_regulations.append("COPPA")
|
119 |
+
|
120 |
+
for regulation in selected_regulations:
|
121 |
+
if regulation in regulation_pdfs:
|
122 |
+
pdf_path = regulation_pdfs[regulation]
|
123 |
+
if os.path.exists(pdf_path):
|
124 |
+
pdf_content = extract_pdf(pdf_path)
|
125 |
+
if pdf_content:
|
126 |
+
full_pdf_content += pdf_content + "\n\n"
|
127 |
+
documents.extend(split_text(pdf_content))
|
128 |
+
print(f"Loaded {regulation} PDF")
|
129 |
+
else:
|
130 |
+
print(f"Failed to extract content from {regulation} PDF")
|
131 |
+
else:
|
132 |
+
print(f"PDF file for {regulation} not found at {pdf_path}")
|
133 |
+
|
134 |
+
# Load additional user-uploaded PDFs
|
135 |
+
if additional_pdfs is not None:
|
136 |
+
for pdf_file in additional_pdfs:
|
137 |
+
pdf_content = extract_pdf(pdf_file.name)
|
138 |
+
if pdf_content:
|
139 |
+
full_pdf_content += pdf_content + "\n\n"
|
140 |
+
documents.extend(split_text(pdf_content))
|
141 |
+
print(f"Loaded additional PDF: {pdf_file.name}")
|
142 |
+
else:
|
143 |
+
print(f"Failed to extract content from uploaded PDF: {pdf_file.name}")
|
144 |
+
|
145 |
+
if not documents:
|
146 |
+
pdfs_loaded = False
|
147 |
+
return "No PDFs were successfully loaded. Please check your selections and uploads."
|
148 |
+
|
149 |
+
print(f"Total documents loaded: {len(documents)}")
|
150 |
+
print(f"Total content length: {len(full_pdf_content)} characters")
|
151 |
+
|
152 |
+
vector_store = generate_embeddings(documents)
|
153 |
+
rag_chain = create_rag_chain(vector_store)
|
154 |
+
|
155 |
+
pdfs_loaded = True
|
156 |
+
return f"PDFs loaded and RAG system updated successfully! Loaded {len(documents)} document chunks."
|
157 |
+
|
158 |
def process_query(user_query):
|
159 |
global rag_chain, full_pdf_content, pdfs_loaded
|
160 |
|
|
|
176 |
|
177 |
return rag_response, gemini_resp, html_content
|
178 |
|
|
|
|
|
|
|
|
|
179 |
# Gradio interface
|
180 |
with gr.Blocks() as iface:
|
181 |
gr.Markdown("# Data Protection Team")
|
182 |
gr.Markdown("Get responses combining advanced RAG, Long Context, and SOTA models to data protection related questions.")
|
183 |
|
184 |
+
with gr.Row():
|
185 |
+
gdpr_checkbox = gr.Checkbox(label="GDPR (EU)")
|
186 |
+
ferpa_checkbox = gr.Checkbox(label="FERPA (US)")
|
187 |
+
coppa_checkbox = gr.Checkbox(label="COPPA (US <13)")
|
188 |
|
189 |
gr.Markdown("**Optional: upload additional PDFs if needed (national regulation, school policy)**")
|
190 |
additional_pdfs = gr.File(
|
|
|
206 |
gemini_output = gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response")
|
207 |
final_output = gr.HTML(label="Final (GPT-4o) Response")
|
208 |
|
|
|
|
|
|
|
209 |
load_button.click(
|
210 |
+
load_pdfs,
|
211 |
+
inputs=[
|
212 |
+
gdpr_checkbox,
|
213 |
+
ferpa_checkbox,
|
214 |
+
coppa_checkbox,
|
215 |
+
additional_pdfs
|
216 |
+
],
|
217 |
outputs=load_output
|
218 |
)
|
219 |
|
|
|
223 |
outputs=[rag_output, gemini_output, final_output]
|
224 |
)
|
225 |
|
226 |
+
iface.launch()
|