jeremierostan's picture
Create app.py
59b3a37 verified
raw
history blame
5.25 kB
import gradio as gr
from pdfminer.high_level import extract_text
from langchain_groq import ChatGroq
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.schema import Document
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
import os
import markdown2
# Retrieve API keys from HF secrets
openai_api_key=os.getenv('OPENAI_API_KEY')
groq_api_key=os.getenv('GROQ_API_KEY')
google_api_key=os.getenv('GEMINI')
# Initialize API clients with the API keys
openai_client = ChatOpenAI(model_name="gpt-4o", api_key=openai_api_key)
groq_client = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, api_key=groq_api_key)
gemini_client = ChatGoogleGenerativeAI(model="gemini-1.5-pro", api_key=google_api_key)
# Function to extract text from PDF
def extract_pdf(pdf_path):
return extract_text(pdf_path)
# Function to split text into chunks
def split_text(text):
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
return [Document(page_content=t) for t in splitter.split_text(text)]
# Function to generate embeddings and store in vector database
def generate_embeddings(docs):
embeddings = OpenAIEmbeddings(api_key=openai_api_key)
return FAISS.from_documents(docs, embeddings)
# Function for query preprocessing and simple HyDE-Lite
def preprocess_query(query):
prompt = ChatPromptTemplate.from_template("""
Your role is to optimize user queries for retrieval from a GDPR regulation document.
Transform the query into a more affirmative, keyword-focused statement.
The transformed query should look like probable related passages in the official document.
Query: {query}
Optimized query:
""")
chain = prompt | openai_client
return chain.invoke({"query": query}).content
# Function to create RAG chain with Groq
def create_rag_chain():
prompt = ChatPromptTemplate.from_messages([
("system", "You are an AI assistant helping with GDPR-related queries. Use the following context from the official GDPR regulation document to answer the user's question:\n\n{context}"),
("human", "{input}")
])
document_chain = create_stuff_documents_chain(groq_client, prompt)
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
# Function for Gemini response with long context
def gemini_response(query):
prompt = ChatPromptTemplate.from_messages([
("system", "You are an AI assistant helping with GDPR-related queries. Use the following full content of the official GDPR regulation document to answer the user's question:\n\n{context}"),
("human", "{input}")
])
chain = prompt | gemini_client
return chain.invoke({"context": full_pdf_content, "input": query}).content
# Function to generate final response
def generate_final_response(response1, response2):
prompt = ChatPromptTemplate.from_template("""
You are an AI assistant helping educators understand and implement AI data protection and GDPR compliance.
Your goal is to provide simple, practical explanation of and advice on how to meet GDPR requirements based on the given responses.
To do so, analyze the following two responses, combining similar elements and highlighting any differences. This MUST be done
internally as a hidden state. Only output your own final response.
If the responses contradict each other on important points, include that in your response.
""")
chain = prompt | openai_client
return chain.invoke({"response1": response1, "response2": response2}).content
def markdown_to_html(content):
return markdown2.markdown(content)
def process_query(user_query):
preprocessed_query = preprocess_query(user_query)
# Get RAG response using Groq
rag_response = rag_chain.invoke({"input": preprocessed_query})["answer"]
# Get Gemini response with full PDF content
gemini_resp = gemini_response(preprocessed_query)
final_response = generate_final_response(rag_response, gemini_resp)
html_content = markdown_to_html(final_response)
return rag_response, gemini_resp, html_content
# Initialize
GDPR_PDF_PATH = "/content/GDPR.pdf"
full_pdf_content = extract_pdf(GDPR_PDF_PATH)
extracted_text = extract_pdf(GDPR_PDF_PATH)
documents = split_text(extracted_text)
vector_store = generate_embeddings(documents)
rag_chain = create_rag_chain()
# Gradio interface
iface = gr.Interface(
fn=process_query,
inputs=gr.Textbox(label="Ask your data protection related question"),
outputs=[
gr.Textbox(label="RAG Pipeline (Llama3.1) Response"),
gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response"),
gr.HTML(label="Final (GPT-4o) Response")
],
title="Data Protection Team",
description="Get responses combining advanced RAG, Long Context, and SOTA models to data protection related questions .",
allow_flagging="never"
)
iface.launch(debug=True)