Spaces:
Sleeping
Sleeping
File size: 5,428 Bytes
e7055d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import pickle
import streamlit as st
from dotenv import load_dotenv
from laas import ChatLaaS
from langchain.embeddings import CacheBackedEmbeddings
from langchain.retrievers import ContextualCompressionRetriever, EnsembleRetriever
from langchain.retrievers.document_compressors import (
CrossEncoderReranker,
FlashrankRerank,
)
from langchain_core.vectorstores import VectorStore
from langchain.storage import LocalFileStore
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers.language.language_parser import (
LanguageParser,
)
from langchain_community.retrievers import BM25Retriever
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import Language, RecursiveCharacterTextSplitter
# Load environment variables
load_dotenv()
# Set up environment variables
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_PROJECT"] = "Code QA Bot"
@st.cache_resource
def setup_embeddings_and_db(project_folder: str): # Note the underscore before 'docs'
CACHE_ROOT_PATH = os.path.join(os.path.expanduser("~"), ".cache")
CACHE_MODELS_PATH = os.path.join(CACHE_ROOT_PATH, "models")
CACHE_EMBEDDINGS_PATH = os.path.join(CACHE_ROOT_PATH, "embeddings")
if not os.path.exists(CACHE_MODELS_PATH):
os.makedirs(CACHE_MODELS_PATH)
if not os.path.exists(CACHE_EMBEDDINGS_PATH):
os.makedirs(CACHE_EMBEDDINGS_PATH)
store = LocalFileStore(CACHE_EMBEDDINGS_PATH)
model_name = "BAAI/bge-m3"
model_kwargs = {"device": "mps"}
encode_kwargs = {"normalize_embeddings": False}
embeddings = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
cache_folder=CACHE_MODELS_PATH,
multi_process=False,
show_progress=True,
)
cached_embeddings = CacheBackedEmbeddings.from_bytes_store(
embeddings,
store,
namespace=embeddings.model_name,
)
FAISS_DB_INDEX = os.path.join(project_folder, "langchain_faiss")
db = FAISS.load_local(
FAISS_DB_INDEX, # ๋ก๋ํ FAISS ์ธ๋ฑ์ค์ ๋๋ ํ ๋ฆฌ ์ด๋ฆ
cached_embeddings, # ์๋ฒ ๋ฉ ์ ๋ณด๋ฅผ ์ ๊ณต
allow_dangerous_deserialization=True, # ์ญ์ง๋ ฌํ๋ฅผ ํ์ฉํ๋ ์ต์
)
return db
# Function to set up retrievers and chain
@st.cache_resource
def setup_retrievers_and_chain(
_db: VectorStore, project_folder: str
): # Note the underscores
faiss_retriever = _db.as_retriever(search_type="mmr", search_kwargs={"k": 20})
bm25_retriever_path = os.path.join(project_folder, "bm25_retriever.pkl")
with open(bm25_retriever_path, "rb") as f:
bm25_retriever = pickle.load(f)
bm25_retriever.k = 20
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, faiss_retriever],
weights=[0.6, 0.4],
search_type="mmr",
)
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-v2-m3")
compressor = CrossEncoderReranker(model=model, top_n=5)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=ensemble_retriever,
)
laas = ChatLaaS(
project=st.secrets["LAAS_PROJECT"],
api_key=st.secrets["LAAS_API_KEY"],
hash=st.secrets["LAAS_HASH"],
)
rag_chain = (
{
"context": compression_retriever | RunnableLambda(lambda x: str(x)),
"question": RunnablePassthrough(),
}
| RunnableLambda(
lambda x: laas.invoke(
"", params={"context": x["context"], "question": x["question"]}
)
)
| StrOutputParser()
)
return rag_chain
def main():
st.title("Code QA Bot")
# Initialize session state for project folder and answer
if "project_folder" not in st.session_state:
st.session_state.project_folder = ""
if "answer" not in st.session_state:
st.session_state.answer = ""
# ํ๋ก์ ํธ ๊ฒฝ๋ก ์
๋ ฅ ๋ฐ๊ธฐ
project_folder = st.text_input(
"Enter the project folder path:", value=st.session_state.project_folder
)
st.session_state.project_folder = project_folder
if project_folder:
# ํ๋ก์ ํธ ๊ฒฝ๋ก๊ฐ ์
๋ ฅ๋๋ฉด ๋ฒกํฐ ์คํ ์ด์ ์ฒด์ธ ์ค์
db = setup_embeddings_and_db(project_folder)
rag_chain = setup_retrievers_and_chain(db, project_folder)
# ์ฌ์ฉ์ ์ง๋ฌธ ์
๋ ฅ ๋ฐ๊ธฐ
user_question = st.text_input("Ask a question about the code:")
# Add a button to reset the answer
if st.button("Reset Answer"):
st.session_state.answer = ""
if user_question:
with st.spinner("Generating answer..."):
response = rag_chain.invoke(user_question)
st.session_state.answer = response
# Display the answer
if st.session_state.answer:
st.write(st.session_state.answer)
else:
st.warning("Please enter the project folder path to proceed.")
if __name__ == "__main__":
main()
|