Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +20 -0
- README.md +124 -6
- app.py +497 -0
- jenesys.jpg +0 -0
- requirements.txt +4 -0
.github/workflows/update_space.yml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Sync to Hugging Face Space
|
| 2 |
+
on:
|
| 3 |
+
push:
|
| 4 |
+
branches: [main]
|
| 5 |
+
workflow_dispatch:
|
| 6 |
+
|
| 7 |
+
jobs:
|
| 8 |
+
sync:
|
| 9 |
+
runs-on: ubuntu-latest
|
| 10 |
+
steps:
|
| 11 |
+
- uses: actions/checkout@v3
|
| 12 |
+
with:
|
| 13 |
+
fetch-depth: 0
|
| 14 |
+
- name: Push to HF Space
|
| 15 |
+
env:
|
| 16 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 17 |
+
run: |
|
| 18 |
+
git config --global user.email "[email protected]"
|
| 19 |
+
git config --global user.name "GitHub Actions"
|
| 20 |
+
git push https://jenesys-ai:[email protected]/spaces/jenesys-ai/ai_bookkeeper_leaderboard main
|
README.md
CHANGED
|
@@ -1,12 +1,130 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: AI_Bookkeeper_Leaderboard
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# AI Bookkeeper Leaderboard
|
| 14 |
+
|
| 15 |
+
A comprehensive benchmark for evaluating AI models on accounting document processing tasks. This benchmark focuses on real-world accounting scenarios and provides detailed metrics across key capabilities.
|
| 16 |
+
|
| 17 |
+
[View Live Demo](https://huggingface.co/spaces/jenesys-ai/ai_bookkeeper_leaderboard)
|
| 18 |
+
|
| 19 |
+
## Models Evaluated
|
| 20 |
+
|
| 21 |
+
- Ark II (Jenesys AI) - 17.94s inference time
|
| 22 |
+
- Ark I (Jenesys AI) - 7.955s inference time
|
| 23 |
+
- Claude-3-5-Sonnet (Anthropic) - 26.51s inference time
|
| 24 |
+
- GPT-4o (OpenAI) - 19.88s inference time
|
| 25 |
+
|
| 26 |
+
## Categories and Raw Data Points
|
| 27 |
+
|
| 28 |
+
The benchmark evaluates models across four main categories, each with specific raw data points:
|
| 29 |
+
|
| 30 |
+
1. **Document Understanding** (25%)
|
| 31 |
+
- Invoice ID Detection
|
| 32 |
+
- Date Field Recognition
|
| 33 |
+
- Line Items Total
|
| 34 |
+
Average = (Invoice ID + Date + Line Items Total) / 3
|
| 35 |
+
|
| 36 |
+
2. **Data Extraction** (25%)
|
| 37 |
+
- Supplier Information
|
| 38 |
+
- Line Items Quantity
|
| 39 |
+
- Line Items Description
|
| 40 |
+
- VAT Number
|
| 41 |
+
- Line Items Total
|
| 42 |
+
Average = (Supplier + Quantity + Description + VAT_Number + Total) / 5
|
| 43 |
+
|
| 44 |
+
3. **Bookkeeping Intelligence** (25%)
|
| 45 |
+
- Discount Total
|
| 46 |
+
- Line Items VAT
|
| 47 |
+
- VAT Exclusive Amount
|
| 48 |
+
- VAT Number Validation
|
| 49 |
+
- Discount Verification
|
| 50 |
+
Average = (Discount + VAT_Items + VAT_Exclusive + VAT_Number + Discount_Verification) / 5
|
| 51 |
+
|
| 52 |
+
4. **Error Handling** (25%)
|
| 53 |
+
- Mean Accuracy (direct measure)
|
| 54 |
+
|
| 55 |
+
## Model Performance
|
| 56 |
+
|
| 57 |
+
### Ark II
|
| 58 |
+
- Document Understanding: 80.8% (0.733, 0.887, 0.803)
|
| 59 |
+
- Data Extraction: 74.9% (0.735, 0.882, 0.555, 0.768, 0.803)
|
| 60 |
+
- Bookkeeping Intelligence: 73.0% (0.800, 0.590, 0.694, 0.768, 0.800)
|
| 61 |
+
- Error Handling: 71.8%
|
| 62 |
+
|
| 63 |
+
### Ark I
|
| 64 |
+
- Document Understanding: 78.5% (0.747, 0.905, 0.703)
|
| 65 |
+
- Data Extraction: 70.9% (0.792, 0.811, 0.521, 0.719, 0.703)
|
| 66 |
+
- Bookkeeping Intelligence: 56.9% (0.600, 0.434, 0.491, 0.719, 0.600)
|
| 67 |
+
- Error Handling: 64.1%
|
| 68 |
+
|
| 69 |
+
### Claude-3-5-Sonnet
|
| 70 |
+
- Document Understanding: 70.4% (0.773, 0.806, 0.533)
|
| 71 |
+
- Data Extraction: 60.9% (0.706, 0.597, 0.504, 0.708, 0.533)
|
| 72 |
+
- Bookkeeping Intelligence: 62.8% (0.600, 0.524, 0.706, 0.708, 0.600)
|
| 73 |
+
- Error Handling: 67.5%
|
| 74 |
+
|
| 75 |
+
### GPT-4o
|
| 76 |
+
- Document Understanding: 69.6% (0.600, 0.917, 0.571)
|
| 77 |
+
- Data Extraction: 68.9% (0.818, 0.722, 0.619, 0.714, 0.571)
|
| 78 |
+
- Bookkeeping Intelligence: 25.5% (0.000, 0.313, 0.250, 0.714, 0.000)
|
| 79 |
+
- Error Handling: 68.3%
|
| 80 |
+
|
| 81 |
+
## Key Findings
|
| 82 |
+
|
| 83 |
+
- Ark II leads in overall performance, particularly in document understanding (80.8%)
|
| 84 |
+
- Ark I shows strong performance relative to its size, especially in document understanding (78.5%)
|
| 85 |
+
- Claude-3-5-Sonnet maintains consistent performance across categories
|
| 86 |
+
- GPT-4o shows competitive performance in document understanding and data extraction but struggles with bookkeeping intelligence tasks
|
| 87 |
+
- Ark I achieves impressive efficiency with the fastest inference time (7.955s)
|
| 88 |
+
|
| 89 |
+
## Interactive Dashboard Features
|
| 90 |
+
|
| 91 |
+
The dashboard provides several interactive visualizations:
|
| 92 |
+
|
| 93 |
+
1. **Overall Leaderboard**: Comprehensive view of all models' performance metrics
|
| 94 |
+
2. **Category Comparison**: Bar chart comparing all models across the four main categories
|
| 95 |
+
3. **Combined Radar Chart**: Multi-model comparison showing relative strengths and weaknesses
|
| 96 |
+
4. **Detailed Metrics**: Interactive comparison table showing differences between selected model and Ark II
|
| 97 |
+
|
| 98 |
+
## Running the Leaderboard
|
| 99 |
+
|
| 100 |
+
1. Install dependencies:
|
| 101 |
+
```bash
|
| 102 |
+
pip install gradio pandas plotly
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
2. Run the app:
|
| 106 |
+
```python
|
| 107 |
+
python app.py
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
3. Open the provided URL in your browser to view the interactive dashboard.
|
| 111 |
+
|
| 112 |
+
## Visualization Features
|
| 113 |
+
|
| 114 |
+
- Color-coded performance indicators
|
| 115 |
+
- Comparative analysis with Ark II as baseline
|
| 116 |
+
- Interactive model selection for detailed comparisons
|
| 117 |
+
- Multi-model radar chart for performance pattern analysis
|
| 118 |
+
- Dynamic updates of comparative metrics
|
| 119 |
+
|
| 120 |
+
## Contributing
|
| 121 |
+
|
| 122 |
+
To add new model evaluations:
|
| 123 |
+
1. Add model scores following the established format in MODELS dictionary
|
| 124 |
+
2. Include all required metrics for each category
|
| 125 |
+
3. Provide model metadata (version, type, provider, size, inference time)
|
| 126 |
+
4. Follow the existing structure in `app.py`
|
| 127 |
+
|
| 128 |
+
## License
|
| 129 |
+
|
| 130 |
+
MIT License
|
app.py
ADDED
|
@@ -0,0 +1,497 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import plotly.graph_objects as go
|
| 4 |
+
import plotly.express as px
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import os
|
| 7 |
+
import base64
|
| 8 |
+
|
| 9 |
+
# Define the benchmark categories and their component metrics
|
| 10 |
+
CATEGORIES = {
|
| 11 |
+
"Document Understanding": {
|
| 12 |
+
"metrics": [
|
| 13 |
+
"Invoice ID Detection",
|
| 14 |
+
"Date Field Recognition",
|
| 15 |
+
"Address Block Parsing",
|
| 16 |
+
"Table Structure Recognition"
|
| 17 |
+
],
|
| 18 |
+
"weight": 0.25
|
| 19 |
+
},
|
| 20 |
+
"Data Extraction": {
|
| 21 |
+
"metrics": [
|
| 22 |
+
"Line Item Extraction",
|
| 23 |
+
"Numerical Value Accuracy",
|
| 24 |
+
"Text Field Accuracy",
|
| 25 |
+
"Field Completeness"
|
| 26 |
+
],
|
| 27 |
+
"weight": 0.25
|
| 28 |
+
},
|
| 29 |
+
"Bookkeeping Intelligence": {
|
| 30 |
+
"metrics": [
|
| 31 |
+
"VAT Calculation",
|
| 32 |
+
"Total Reconciliation",
|
| 33 |
+
"Tax Code Assignment",
|
| 34 |
+
"Account Classification"
|
| 35 |
+
],
|
| 36 |
+
"weight": 0.25
|
| 37 |
+
},
|
| 38 |
+
"Error Handling": {
|
| 39 |
+
"metrics": [
|
| 40 |
+
"Validation Rules",
|
| 41 |
+
"Inconsistency Detection",
|
| 42 |
+
"Missing Data Handling",
|
| 43 |
+
"Format Validation"
|
| 44 |
+
],
|
| 45 |
+
"weight": 0.25
|
| 46 |
+
}
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# Updated benchmark data with real metrics
|
| 50 |
+
MODELS = {
|
| 51 |
+
"Ark II": {
|
| 52 |
+
"version": "ark-ii-v1",
|
| 53 |
+
"type": "Text + Vision",
|
| 54 |
+
"provider": "Jenesys AI",
|
| 55 |
+
"inference_time": "17.94s",
|
| 56 |
+
"scores": {
|
| 57 |
+
"Document Understanding": {
|
| 58 |
+
"Invoice ID": 0.733,
|
| 59 |
+
"Date of Invoice": 0.887,
|
| 60 |
+
"Line Items Total": 0.803,
|
| 61 |
+
"Overall": 0.808
|
| 62 |
+
},
|
| 63 |
+
"Data Extraction": {
|
| 64 |
+
"Supplier": 0.735,
|
| 65 |
+
"Line Items Quantity": 0.882,
|
| 66 |
+
"Line Items Description": 0.555,
|
| 67 |
+
"VAT Number": 0.768,
|
| 68 |
+
"Line Items Total": 0.803,
|
| 69 |
+
"Overall": 0.749
|
| 70 |
+
},
|
| 71 |
+
"Bookkeeping Intelligence": {
|
| 72 |
+
"Discount Total": 0.800,
|
| 73 |
+
"Line Items VAT": 0.590,
|
| 74 |
+
"VAT Exclusive": 0.694,
|
| 75 |
+
"VAT Number": 0.768,
|
| 76 |
+
"Discount Verification": 0.800,
|
| 77 |
+
"Overall": 0.730
|
| 78 |
+
},
|
| 79 |
+
"Error Handling": {
|
| 80 |
+
"Mean Accuracy": 0.718,
|
| 81 |
+
"Overall": 0.718
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
},
|
| 85 |
+
"Claude-3-5-Sonnet": {
|
| 86 |
+
"version": "claude-3-5-sonnet-20241022",
|
| 87 |
+
"type": "Text + Vision",
|
| 88 |
+
"provider": "Anthropic",
|
| 89 |
+
"inference_time": "26.51s",
|
| 90 |
+
"scores": {
|
| 91 |
+
"Document Understanding": {
|
| 92 |
+
"Invoice ID": 0.773,
|
| 93 |
+
"Date of Invoice": 0.806,
|
| 94 |
+
"Line Items Total": 0.533,
|
| 95 |
+
"Overall": 0.704
|
| 96 |
+
},
|
| 97 |
+
"Data Extraction": {
|
| 98 |
+
"Supplier": 0.706,
|
| 99 |
+
"Line Items Quantity": 0.597,
|
| 100 |
+
"Line Items Description": 0.504,
|
| 101 |
+
"VAT Number": 0.708,
|
| 102 |
+
"Line Items Total": 0.533,
|
| 103 |
+
"Overall": 0.609
|
| 104 |
+
},
|
| 105 |
+
"Bookkeeping Intelligence": {
|
| 106 |
+
"Discount Total": 0.600,
|
| 107 |
+
"Line Items VAT": 0.524,
|
| 108 |
+
"VAT Exclusive": 0.706,
|
| 109 |
+
"VAT Number": 0.708,
|
| 110 |
+
"Discount Verification": 0.600,
|
| 111 |
+
"Overall": 0.628
|
| 112 |
+
},
|
| 113 |
+
"Error Handling": {
|
| 114 |
+
"Mean Accuracy": 0.675,
|
| 115 |
+
"Overall": 0.675
|
| 116 |
+
}
|
| 117 |
+
}
|
| 118 |
+
},
|
| 119 |
+
"GPT-4o": {
|
| 120 |
+
"version": "gpt-4o",
|
| 121 |
+
"type": "Text + Vision",
|
| 122 |
+
"provider": "OpenAI",
|
| 123 |
+
"inference_time": "19.88s",
|
| 124 |
+
"scores": {
|
| 125 |
+
"Document Understanding": {
|
| 126 |
+
"Invoice ID": 0.600,
|
| 127 |
+
"Date of Invoice": 0.917,
|
| 128 |
+
"Line Items Total": 0.571,
|
| 129 |
+
"Overall": 0.696
|
| 130 |
+
},
|
| 131 |
+
"Data Extraction": {
|
| 132 |
+
"Supplier": 0.818,
|
| 133 |
+
"Line Items Quantity": 0.722,
|
| 134 |
+
"Line Items Description": 0.619,
|
| 135 |
+
"VAT Number": 0.714,
|
| 136 |
+
"Line Items Total": 0.571,
|
| 137 |
+
"Overall": 0.689
|
| 138 |
+
},
|
| 139 |
+
"Bookkeeping Intelligence": {
|
| 140 |
+
"Discount Total": 0.000,
|
| 141 |
+
"Line Items VAT": 0.313,
|
| 142 |
+
"VAT Exclusive": 0.250,
|
| 143 |
+
"VAT Number": 0.714,
|
| 144 |
+
"Discount Verification": 0.000,
|
| 145 |
+
"Overall": 0.255
|
| 146 |
+
},
|
| 147 |
+
"Error Handling": {
|
| 148 |
+
"Mean Accuracy": 0.683,
|
| 149 |
+
"Overall": 0.683
|
| 150 |
+
}
|
| 151 |
+
}
|
| 152 |
+
},
|
| 153 |
+
"Ark I": {
|
| 154 |
+
"version": "ark-i-v1",
|
| 155 |
+
"type": "Text + Vision",
|
| 156 |
+
"provider": "Jenesys AI",
|
| 157 |
+
"inference_time": "7.955s",
|
| 158 |
+
"scores": {
|
| 159 |
+
"Document Understanding": {
|
| 160 |
+
"Invoice ID": 0.747,
|
| 161 |
+
"Date of Invoice": 0.905,
|
| 162 |
+
"Line Items Total": 0.703,
|
| 163 |
+
"Overall": 0.785
|
| 164 |
+
},
|
| 165 |
+
"Data Extraction": {
|
| 166 |
+
"Supplier": 0.792,
|
| 167 |
+
"Line Items Quantity": 0.811,
|
| 168 |
+
"Line Items Description": 0.521,
|
| 169 |
+
"VAT Number": 0.719,
|
| 170 |
+
"Line Items Total": 0.703,
|
| 171 |
+
"Overall": 0.709
|
| 172 |
+
},
|
| 173 |
+
"Bookkeeping Intelligence": {
|
| 174 |
+
"Discount Total": 0.600,
|
| 175 |
+
"Line Items VAT": 0.434,
|
| 176 |
+
"VAT Exclusive": 0.491,
|
| 177 |
+
"VAT Number": 0.719,
|
| 178 |
+
"Discount Verification": 0.600,
|
| 179 |
+
"Overall": 0.569
|
| 180 |
+
},
|
| 181 |
+
"Error Handling": {
|
| 182 |
+
"Mean Accuracy": 0.641,
|
| 183 |
+
"Overall": 0.641
|
| 184 |
+
}
|
| 185 |
+
}
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
def calculate_category_score(scores):
|
| 190 |
+
"""Calculate average score for a category's metrics."""
|
| 191 |
+
# Skip 'Overall' when calculating average
|
| 192 |
+
metrics = {k: v for k, v in scores.items() if k != 'Overall'}
|
| 193 |
+
return sum(metrics.values()) / len(metrics)
|
| 194 |
+
|
| 195 |
+
def calculate_overall_score(model_data):
|
| 196 |
+
"""Calculate the weighted average score across all categories."""
|
| 197 |
+
category_scores = {}
|
| 198 |
+
for category, metrics in model_data["scores"].items():
|
| 199 |
+
# Skip 'Overall' when calculating
|
| 200 |
+
category_metrics = {k: v for k, v in metrics.items() if k != 'Overall'}
|
| 201 |
+
category_scores[category] = sum(category_metrics.values()) / len(category_metrics) * CATEGORIES[category]["weight"]
|
| 202 |
+
return sum(category_scores.values())
|
| 203 |
+
|
| 204 |
+
def create_leaderboard_df():
|
| 205 |
+
"""Create a DataFrame for the leaderboard with detailed metrics."""
|
| 206 |
+
data = []
|
| 207 |
+
for model_name, model_info in MODELS.items():
|
| 208 |
+
# Calculate category scores
|
| 209 |
+
category_scores = {
|
| 210 |
+
category: calculate_category_score(metrics)
|
| 211 |
+
for category, metrics in model_info["scores"].items()
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
# Use Error Handling score as Average Score
|
| 215 |
+
error_handling_score = calculate_category_score(model_info["scores"]["Error Handling"])
|
| 216 |
+
|
| 217 |
+
row = {
|
| 218 |
+
"Model": model_name,
|
| 219 |
+
"Version": model_info["version"],
|
| 220 |
+
"Type": model_info["type"],
|
| 221 |
+
"Provider": model_info["provider"],
|
| 222 |
+
"Average Score": error_handling_score, # Using Error Handling score
|
| 223 |
+
**category_scores
|
| 224 |
+
}
|
| 225 |
+
data.append(row)
|
| 226 |
+
|
| 227 |
+
df = pd.DataFrame(data)
|
| 228 |
+
return df.sort_values("Average Score", ascending=False)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def create_category_comparison():
|
| 232 |
+
"""Create a bar chart comparing all models across categories."""
|
| 233 |
+
df = create_leaderboard_df()
|
| 234 |
+
df_melted = df.melt(
|
| 235 |
+
id_vars=["Model"],
|
| 236 |
+
value_vars=list(CATEGORIES.keys()),
|
| 237 |
+
var_name="Category",
|
| 238 |
+
value_name="Score"
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
fig = px.bar(
|
| 242 |
+
df_melted,
|
| 243 |
+
x="Category",
|
| 244 |
+
y="Score",
|
| 245 |
+
color="Model",
|
| 246 |
+
barmode="group",
|
| 247 |
+
title="Model Performance by Category",
|
| 248 |
+
range_y=[0, 1.0]
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
fig.update_layout(
|
| 252 |
+
xaxis_title="Category",
|
| 253 |
+
yaxis_title="Score",
|
| 254 |
+
legend_title="Model",
|
| 255 |
+
font=dict(size=14),
|
| 256 |
+
title=dict(
|
| 257 |
+
text="Model Performance by Category",
|
| 258 |
+
x=0.5,
|
| 259 |
+
y=0.95,
|
| 260 |
+
xanchor='center',
|
| 261 |
+
yanchor='top',
|
| 262 |
+
font=dict(size=20)
|
| 263 |
+
),
|
| 264 |
+
yaxis=dict(
|
| 265 |
+
tickmode='array',
|
| 266 |
+
ticktext=['0%', '20%', '40%', '60%', '80%', '100%'],
|
| 267 |
+
tickvals=[0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
| 268 |
+
gridcolor='rgba(0, 0, 0, 0.1)',
|
| 269 |
+
zeroline=True,
|
| 270 |
+
zerolinecolor='rgba(0, 0, 0, 0.2)',
|
| 271 |
+
zerolinewidth=1
|
| 272 |
+
),
|
| 273 |
+
xaxis=dict(
|
| 274 |
+
tickangle=-45,
|
| 275 |
+
gridcolor='rgba(0, 0, 0, 0.1)'
|
| 276 |
+
),
|
| 277 |
+
bargap=0.2,
|
| 278 |
+
bargroupgap=0.1,
|
| 279 |
+
paper_bgcolor='rgba(255, 255, 255, 0.9)',
|
| 280 |
+
plot_bgcolor='rgba(255, 255, 255, 0.9)',
|
| 281 |
+
margin=dict(t=100, b=100, l=100, r=20),
|
| 282 |
+
showlegend=True,
|
| 283 |
+
legend=dict(
|
| 284 |
+
yanchor="top",
|
| 285 |
+
y=1,
|
| 286 |
+
xanchor="left",
|
| 287 |
+
x=1.02,
|
| 288 |
+
bgcolor='rgba(255, 255, 255, 0.9)',
|
| 289 |
+
bordercolor='rgba(0, 0, 0, 0.1)',
|
| 290 |
+
borderwidth=1
|
| 291 |
+
)
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
return fig
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def create_combined_radar_chart():
|
| 299 |
+
"""Create a radar chart showing all models together."""
|
| 300 |
+
try:
|
| 301 |
+
import plotly.graph_objects as go
|
| 302 |
+
|
| 303 |
+
categories = list(CATEGORIES.keys())
|
| 304 |
+
|
| 305 |
+
# Define colors for each model
|
| 306 |
+
colors = {
|
| 307 |
+
"Ark II": "rgb(99, 110, 250)", # Blue
|
| 308 |
+
"Claude-3-5-Sonnet": "rgb(239, 85, 59)", # Red
|
| 309 |
+
"GPT-4o": "rgb(0, 204, 150)", # Green
|
| 310 |
+
"Ark I": "rgb(171, 99, 250)" # Purple
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
fig = go.Figure()
|
| 314 |
+
|
| 315 |
+
# Add trace for each model
|
| 316 |
+
for model_name, color in colors.items():
|
| 317 |
+
model_data = MODELS[model_name]
|
| 318 |
+
values = []
|
| 319 |
+
|
| 320 |
+
for category in categories:
|
| 321 |
+
metrics = {k: v for k, v in model_data["scores"][category].items() if k != 'Overall'}
|
| 322 |
+
if category == "Error Handling":
|
| 323 |
+
values.append(metrics.get("Mean Accuracy", 0.0))
|
| 324 |
+
else:
|
| 325 |
+
values.append(sum(metrics.values()) / len(metrics) if metrics else 0.0)
|
| 326 |
+
|
| 327 |
+
fig.add_trace(go.Scatterpolar(
|
| 328 |
+
r=values + [values[0]],
|
| 329 |
+
theta=categories + [categories[0]],
|
| 330 |
+
fill='none',
|
| 331 |
+
line=dict(color=color, width=2),
|
| 332 |
+
name=model_name
|
| 333 |
+
))
|
| 334 |
+
|
| 335 |
+
# Update layout
|
| 336 |
+
fig.update_layout(
|
| 337 |
+
polar=dict(
|
| 338 |
+
radialaxis=dict(
|
| 339 |
+
visible=True,
|
| 340 |
+
range=[0, 1.0],
|
| 341 |
+
tickmode='array',
|
| 342 |
+
ticktext=['0%', '20%', '40%', '60%', '80%', '100%'],
|
| 343 |
+
tickvals=[0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
| 344 |
+
gridcolor='rgba(0, 0, 0, 0.1)',
|
| 345 |
+
linecolor='rgba(0, 0, 0, 0.1)'
|
| 346 |
+
),
|
| 347 |
+
angularaxis=dict(
|
| 348 |
+
gridcolor='rgba(0, 0, 0, 0.1)',
|
| 349 |
+
linecolor='rgba(0, 0, 0, 0.1)'
|
| 350 |
+
),
|
| 351 |
+
bgcolor='rgba(255, 255, 255, 0.9)'
|
| 352 |
+
),
|
| 353 |
+
showlegend=True,
|
| 354 |
+
paper_bgcolor='rgba(255, 255, 255, 0.9)',
|
| 355 |
+
plot_bgcolor='rgba(255, 255, 255, 0.9)',
|
| 356 |
+
title=dict(
|
| 357 |
+
text="Model Performance Comparison",
|
| 358 |
+
x=0.5,
|
| 359 |
+
y=0.95,
|
| 360 |
+
xanchor='center',
|
| 361 |
+
yanchor='top',
|
| 362 |
+
font=dict(size=20)
|
| 363 |
+
),
|
| 364 |
+
legend=dict(
|
| 365 |
+
yanchor="top",
|
| 366 |
+
y=1,
|
| 367 |
+
xanchor="left",
|
| 368 |
+
x=1.02
|
| 369 |
+
),
|
| 370 |
+
margin=dict(t=100, b=100, l=100, r=100)
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
return fig
|
| 374 |
+
except Exception as e:
|
| 375 |
+
print(f"Error creating radar chart: {str(e)}")
|
| 376 |
+
return go.Figure()
|
| 377 |
+
|
| 378 |
+
def create_comparison_metrics_df(model_name):
|
| 379 |
+
"""Create a DataFrame showing detailed metrics with comparisons."""
|
| 380 |
+
base_model = "Ark II"
|
| 381 |
+
data = []
|
| 382 |
+
|
| 383 |
+
base_data = MODELS[base_model]["scores"]
|
| 384 |
+
compare_data = MODELS[model_name]["scores"]
|
| 385 |
+
|
| 386 |
+
for category in CATEGORIES.keys():
|
| 387 |
+
base_metrics = {k: v for k, v in base_data[category].items() if k != 'Overall'}
|
| 388 |
+
compare_metrics = {k: v for k, v in compare_data[category].items() if k != 'Overall'}
|
| 389 |
+
|
| 390 |
+
for metric in base_metrics.keys():
|
| 391 |
+
if metric in compare_metrics:
|
| 392 |
+
base_value = base_metrics[metric]
|
| 393 |
+
compare_value = compare_metrics[metric]
|
| 394 |
+
diff = compare_value - base_value
|
| 395 |
+
|
| 396 |
+
data.append({
|
| 397 |
+
"Category": category,
|
| 398 |
+
"Metric": metric,
|
| 399 |
+
f"{model_name} Score": compare_value,
|
| 400 |
+
f"{base_model} Score": base_value,
|
| 401 |
+
"Difference": diff,
|
| 402 |
+
"Better/Worse": "β" if diff > 0 else "β" if diff < 0 else "="
|
| 403 |
+
})
|
| 404 |
+
|
| 405 |
+
df = pd.DataFrame(data)
|
| 406 |
+
return df
|
| 407 |
+
|
| 408 |
+
def update_model_details(model_name):
|
| 409 |
+
"""Update the detailed metrics view for a selected model."""
|
| 410 |
+
try:
|
| 411 |
+
df = create_comparison_metrics_df(model_name)
|
| 412 |
+
return [df, create_combined_radar_chart()]
|
| 413 |
+
except Exception as e:
|
| 414 |
+
print(f"Error in update_model_details: {str(e)}")
|
| 415 |
+
return [pd.DataFrame(), go.Figure()]
|
| 416 |
+
|
| 417 |
+
# Load logo as base64
|
| 418 |
+
def get_logo_html():
|
| 419 |
+
logo_path = os.path.join(os.path.dirname(__file__), "jenesys.jpg")
|
| 420 |
+
with open(logo_path, "rb") as f:
|
| 421 |
+
encoded_logo = base64.b64encode(f.read()).decode()
|
| 422 |
+
return f'<img src="data:image/jpeg;base64,{encoded_logo}" style="height: 50px; margin-right: 10px;">'
|
| 423 |
+
|
| 424 |
+
# Create the Gradio interface
|
| 425 |
+
with gr.Blocks(title="AI Bookkeeper Leaderboard") as demo:
|
| 426 |
+
gr.Markdown(f"""
|
| 427 |
+
<div style="display: flex; align-items: center; margin-bottom: 1rem;">
|
| 428 |
+
{get_logo_html()}
|
| 429 |
+
<h1 style="margin: 0;">AI Bookkeeper Leaderboard</h1>
|
| 430 |
+
</div>
|
| 431 |
+
""")
|
| 432 |
+
|
| 433 |
+
gr.Markdown(f"Last updated: {datetime.now().strftime('%Y-%m-%d')}")
|
| 434 |
+
|
| 435 |
+
gr.Markdown("""
|
| 436 |
+
## About the Benchmark π
|
| 437 |
+
|
| 438 |
+
This benchmark evaluates Large Vision Language Models on their ability to process and understand bookkeeping documents across four main categories:
|
| 439 |
+
|
| 440 |
+
1. **Document Understanding (25%)**: Ability to parse and understand document structure
|
| 441 |
+
2. **Data Extraction (25%)**: Accuracy in extracting specific data points
|
| 442 |
+
3. **Bookkeeping Intelligence (25%)**: Understanding of bookkeeping concepts, calculations and general ledger accounting
|
| 443 |
+
4. **Error Handling (25%)**: Ability to detect and handle inconsistencies
|
| 444 |
+
|
| 445 |
+
Each metric is scored from 0 to 1, where:
|
| 446 |
+
- 0.90-1.00 = Excellent
|
| 447 |
+
- 0.80-0.89 = Good
|
| 448 |
+
- 0.70-0.79 = Acceptable
|
| 449 |
+
- < 0.70 = Needs improvement
|
| 450 |
+
|
| 451 |
+
""")
|
| 452 |
+
|
| 453 |
+
with gr.Row():
|
| 454 |
+
leaderboard = gr.DataFrame(
|
| 455 |
+
create_leaderboard_df(),
|
| 456 |
+
label="Overall Leaderboard",
|
| 457 |
+
height=200
|
| 458 |
+
)
|
| 459 |
+
|
| 460 |
+
with gr.Row():
|
| 461 |
+
with gr.Column(scale=1, min_width=1200):
|
| 462 |
+
category_plot = gr.Plot(
|
| 463 |
+
value=create_category_comparison()
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
with gr.Row():
|
| 467 |
+
with gr.Column(scale=1):
|
| 468 |
+
model_selector = gr.Dropdown(
|
| 469 |
+
choices=[m for m in list(MODELS.keys()) if m != "Ark II"],
|
| 470 |
+
label="Select Model to Compare with Ark II",
|
| 471 |
+
value="Claude-3-5-Sonnet",
|
| 472 |
+
interactive=True
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
with gr.Row():
|
| 476 |
+
with gr.Column(scale=2):
|
| 477 |
+
metrics_table = gr.DataFrame(
|
| 478 |
+
create_comparison_metrics_df("Claude-3-5-Sonnet"),
|
| 479 |
+
label="Comparison Metrics (vs Ark II)",
|
| 480 |
+
height=400
|
| 481 |
+
)
|
| 482 |
+
|
| 483 |
+
with gr.Row():
|
| 484 |
+
with gr.Column(scale=1, min_width=1200):
|
| 485 |
+
radar_chart = gr.Plot(value=create_combined_radar_chart())
|
| 486 |
+
|
| 487 |
+
# Update callback
|
| 488 |
+
model_selector.change(
|
| 489 |
+
fn=update_model_details,
|
| 490 |
+
inputs=[model_selector],
|
| 491 |
+
outputs=[metrics_table, radar_chart]
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
if __name__ == "__main__":
|
| 497 |
+
demo.launch(share=True)
|
jenesys.jpg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=4.0.0
|
| 2 |
+
pandas>=2.0.0
|
| 3 |
+
plotly>=5.0.0
|
| 4 |
+
numpy>=1.24.0
|