Spaces:
Runtime error
Runtime error
Commit
·
3f362c0
1
Parent(s):
3027a6c
add gpt nano model
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import huggingface_hub
|
@@ -6,8 +9,6 @@ import torch
|
|
6 |
import torch.nn as nn
|
7 |
import torch.nn.functional as F
|
8 |
|
9 |
-
import yaml
|
10 |
-
|
11 |
|
12 |
mlp_config_path = huggingface_hub.hf_hub_download(
|
13 |
"jefsnacker/surname_generator",
|
@@ -25,12 +26,27 @@ wavenet_weights_path = huggingface_hub.hf_hub_download(
|
|
25 |
"jefsnacker/surname_generator",
|
26 |
"wavenet_weights.pt")
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
with open(mlp_config_path, 'r') as file:
|
29 |
mlp_config = yaml.safe_load(file)
|
30 |
|
31 |
with open(wavenet_config_path, 'r') as file:
|
32 |
wavenet_config = yaml.safe_load(file)
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
34 |
class MLP(nn.Module):
|
35 |
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
|
36 |
super(MLP, self).__init__()
|
@@ -75,6 +91,10 @@ mlp = MLP(mlp_config['num_char'],
|
|
75 |
mlp.load_state_dict(torch.load(mlp_weights_path))
|
76 |
mlp.eval()
|
77 |
|
|
|
|
|
|
|
|
|
78 |
class WaveNet(nn.Module):
|
79 |
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
|
80 |
super(WaveNet, self).__init__()
|
@@ -119,6 +139,185 @@ wavenet = WaveNet(wavenet_config['num_char'],
|
|
119 |
wavenet.load_state_dict(torch.load(wavenet_weights_path))
|
120 |
wavenet.eval()
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
def generate_names(name_start, number_of_names, model):
|
123 |
if model == "MLP":
|
124 |
stoi = mlp_config['stoi']
|
@@ -126,6 +325,9 @@ def generate_names(name_start, number_of_names, model):
|
|
126 |
elif model == "WaveNet":
|
127 |
stoi = wavenet_config['stoi']
|
128 |
window = wavenet_config['window']
|
|
|
|
|
|
|
129 |
else:
|
130 |
raise Exception("Model not selected")
|
131 |
|
@@ -148,6 +350,8 @@ def generate_names(name_start, number_of_names, model):
|
|
148 |
ix = mlp.sample_char(x)
|
149 |
elif model == "WaveNet":
|
150 |
ix = wavenet.sample_char(x)
|
|
|
|
|
151 |
else:
|
152 |
raise Exception("Model not selected")
|
153 |
|
@@ -166,7 +370,7 @@ demo = gr.Interface(
|
|
166 |
inputs=[
|
167 |
gr.Textbox(placeholder="Start name with..."),
|
168 |
gr.Number(value=5),
|
169 |
-
gr.Dropdown(["MLP", "WaveNet"], value="
|
170 |
],
|
171 |
outputs="text",
|
172 |
)
|
|
|
1 |
+
import math
|
2 |
+
import yaml
|
3 |
+
|
4 |
import gradio as gr
|
5 |
|
6 |
import huggingface_hub
|
|
|
9 |
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
|
|
|
|
|
12 |
|
13 |
mlp_config_path = huggingface_hub.hf_hub_download(
|
14 |
"jefsnacker/surname_generator",
|
|
|
26 |
"jefsnacker/surname_generator",
|
27 |
"wavenet_weights.pt")
|
28 |
|
29 |
+
gpt_nano_config_path = huggingface_hub.hf_hub_download(
|
30 |
+
"jefsnacker/surname_generator",
|
31 |
+
"gpt_config.yaml")
|
32 |
+
|
33 |
+
gpt_nano_weights_path = huggingface_hub.hf_hub_download(
|
34 |
+
"jefsnacker/surname_generator",
|
35 |
+
"gpt_weights.pt")
|
36 |
+
|
37 |
with open(mlp_config_path, 'r') as file:
|
38 |
mlp_config = yaml.safe_load(file)
|
39 |
|
40 |
with open(wavenet_config_path, 'r') as file:
|
41 |
wavenet_config = yaml.safe_load(file)
|
42 |
+
|
43 |
+
with open(gpt_nano_config_path, 'r') as file:
|
44 |
+
gpt_nano_config = yaml.safe_load(file)
|
45 |
|
46 |
+
##################################################################################
|
47 |
+
## MLP
|
48 |
+
##################################################################################
|
49 |
+
|
50 |
class MLP(nn.Module):
|
51 |
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
|
52 |
super(MLP, self).__init__()
|
|
|
91 |
mlp.load_state_dict(torch.load(mlp_weights_path))
|
92 |
mlp.eval()
|
93 |
|
94 |
+
##################################################################################
|
95 |
+
## WaveNet
|
96 |
+
##################################################################################
|
97 |
+
|
98 |
class WaveNet(nn.Module):
|
99 |
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
|
100 |
super(WaveNet, self).__init__()
|
|
|
139 |
wavenet.load_state_dict(torch.load(wavenet_weights_path))
|
140 |
wavenet.eval()
|
141 |
|
142 |
+
##################################################################################
|
143 |
+
## Transformer
|
144 |
+
##################################################################################
|
145 |
+
|
146 |
+
class NewGELU(nn.Module):
|
147 |
+
"""
|
148 |
+
Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
|
149 |
+
"""
|
150 |
+
def forward(self, x):
|
151 |
+
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
|
152 |
+
|
153 |
+
class GptAttention(nn.Module):
|
154 |
+
"""
|
155 |
+
For this attention module k = v = q are all the same.
|
156 |
+
It's for encoder/decoder only transfomers.
|
157 |
+
"""
|
158 |
+
def __init__(self, config):
|
159 |
+
super(GptAttention, self).__init__()
|
160 |
+
self.config = config
|
161 |
+
|
162 |
+
assert self.config["d_model"] % self.config["heads"] == 0
|
163 |
+
self.heads = self.config["heads"]
|
164 |
+
|
165 |
+
self.w_attn = nn.Linear(self.config["d_model"], 3*self.config["d_model"])
|
166 |
+
self.head = nn.Linear(self.config["d_model"], self.config["d_model"])
|
167 |
+
|
168 |
+
self.attn_dropout = nn.Dropout(config["attn_pdrop"])
|
169 |
+
self.resid_dropout = nn.Dropout(config["resid_pdrop"])
|
170 |
+
|
171 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
172 |
+
self.register_buffer(
|
173 |
+
"bias",
|
174 |
+
torch.tril(
|
175 |
+
torch.ones(
|
176 |
+
self.config["window"],
|
177 |
+
self.config["window"])
|
178 |
+
).view(1, 1, self.config["window"], self.config["window"])
|
179 |
+
)
|
180 |
+
|
181 |
+
def forward(self, x):
|
182 |
+
B, window, embs = x.shape
|
183 |
+
|
184 |
+
q, v, k = self.w_attn(x).split(self.config["d_model"], dim=2)
|
185 |
+
|
186 |
+
# (B, heads, window, embs)
|
187 |
+
q = q.view(
|
188 |
+
B,
|
189 |
+
window,
|
190 |
+
self.config["heads"],
|
191 |
+
embs // self.config["heads"]
|
192 |
+
).transpose(1, 2)
|
193 |
+
k = k.view(
|
194 |
+
B,
|
195 |
+
window,
|
196 |
+
self.config["heads"],
|
197 |
+
embs // self.config["heads"]
|
198 |
+
).transpose(1, 2)
|
199 |
+
v = v.view(
|
200 |
+
B,
|
201 |
+
window,
|
202 |
+
self.config["heads"],
|
203 |
+
embs // self.config["heads"]
|
204 |
+
).transpose(1, 2)
|
205 |
+
|
206 |
+
# Self-attend: (B, heads, window, embs) x (B, heads, embs, window) -> (B, heads, window, window)
|
207 |
+
scores = q @ k.transpose(-2, -1) / math.sqrt(k.size(-1))
|
208 |
+
mask = scores.masked_fill(self.bias[:,:,:window,:window] == 0, float('-inf'))
|
209 |
+
probs = F.softmax(mask, dim=-1)
|
210 |
+
attn = self.attn_dropout(probs)
|
211 |
+
attn = probs @ v
|
212 |
+
attn = attn.transpose(1, 2).contiguous().view(B, window, embs)
|
213 |
+
|
214 |
+
return self.resid_dropout(self.head(attn))
|
215 |
+
|
216 |
+
class FeedForward(nn.Module):
|
217 |
+
def __init__(self, config):
|
218 |
+
super(FeedForward, self).__init__()
|
219 |
+
self.l1 = nn.Linear(config["d_model"], 4*config["d_model"])
|
220 |
+
self.l2 = nn.Linear(4*config["d_model"], config["d_model"])
|
221 |
+
self.dropout = nn.Dropout(config["resid_pdrop"])
|
222 |
+
|
223 |
+
def forward(self, x):
|
224 |
+
x = NewGELU()(self.l1(x))
|
225 |
+
return self.dropout(self.l2(x))
|
226 |
+
|
227 |
+
class Block(nn.Module):
|
228 |
+
def __init__(self, config):
|
229 |
+
super(Block, self).__init__()
|
230 |
+
self.attn = GptAttention(config)
|
231 |
+
self.norm1 = nn.LayerNorm(config["d_model"])
|
232 |
+
self.ff = FeedForward(config)
|
233 |
+
self.norm2 = nn.LayerNorm(config["d_model"])
|
234 |
+
|
235 |
+
def forward(self, x):
|
236 |
+
x = self.norm1(x + self.attn(x))
|
237 |
+
x = self.norm2(x + self.ff(x))
|
238 |
+
return x
|
239 |
+
|
240 |
+
class GPT(nn.Module):
|
241 |
+
def __init__(self, config):
|
242 |
+
super(GPT, self).__init__()
|
243 |
+
self.config = config
|
244 |
+
|
245 |
+
self.vocab_emb = nn.Embedding(self.config["vocab"], self.config["d_model"])
|
246 |
+
self.pos_emb = nn.Embedding(self.config["window"], self.config["d_model"])
|
247 |
+
self.emb_dropout = nn.Dropout(config["embd_pdrop"])
|
248 |
+
|
249 |
+
self.blocks = nn.ModuleList([Block(self.config) for _ in range(self.config["blocks"])])
|
250 |
+
self.head_layer_norm = nn.LayerNorm(config["d_model"])
|
251 |
+
self.head = nn.Linear(self.config["d_model"], self.config["vocab"])
|
252 |
+
|
253 |
+
def forward(self, x):
|
254 |
+
vocab_emb = self.vocab_emb(x)
|
255 |
+
pos_emb = self.pos_emb(torch.arange(0, x.shape[1], dtype=torch.long, device=x.device))
|
256 |
+
|
257 |
+
x = self.emb_dropout(vocab_emb + pos_emb)
|
258 |
+
|
259 |
+
for b in self.blocks:
|
260 |
+
x = b(x)
|
261 |
+
|
262 |
+
x = self.head_layer_norm(x)
|
263 |
+
x = self.head(x)
|
264 |
+
|
265 |
+
return x
|
266 |
+
|
267 |
+
def configure_opt(self):
|
268 |
+
p_decay = set()
|
269 |
+
p_no_decay = set()
|
270 |
+
whitelist_weight_modules = (torch.nn.Linear, )
|
271 |
+
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
|
272 |
+
for mn, m in self.named_modules():
|
273 |
+
for pn, p in m.named_parameters():
|
274 |
+
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
|
275 |
+
# random note: because named_modules and named_parameters are recursive
|
276 |
+
# we will see the same tensors p many many times. but doing it this way
|
277 |
+
# allows us to know which parent module any tensor p belongs to...
|
278 |
+
if pn.endswith('bias'):
|
279 |
+
# all biases will not be decayed
|
280 |
+
p_no_decay.add(fpn)
|
281 |
+
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
|
282 |
+
# weights of whitelist modules will be weight decayed
|
283 |
+
p_decay.add(fpn)
|
284 |
+
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
|
285 |
+
# weights of blacklist modules will NOT be weight decayed
|
286 |
+
p_no_decay.add(fpn)
|
287 |
+
|
288 |
+
# validate that we considered every parameter
|
289 |
+
param_dict = {pn: p for pn, p in self.named_parameters()}
|
290 |
+
inter_params = p_decay & p_no_decay
|
291 |
+
union_params = p_decay | p_no_decay
|
292 |
+
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
|
293 |
+
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
|
294 |
+
% (str(param_dict.keys() - union_params), )
|
295 |
+
|
296 |
+
# create the pytorch optimizer object
|
297 |
+
optim_groups = [
|
298 |
+
{"params": [param_dict[pn] for pn in sorted(list(p_decay))], "weight_decay": self.config["weight_decay"]},
|
299 |
+
{"params": [param_dict[pn] for pn in sorted(list(p_no_decay))], "weight_decay": 0.0},
|
300 |
+
]
|
301 |
+
optimizer = torch.optim.AdamW(
|
302 |
+
optim_groups,
|
303 |
+
lr=self.config["lr"],
|
304 |
+
betas=(self.config["b1"], self.config["b2"])
|
305 |
+
)
|
306 |
+
return optimizer
|
307 |
+
|
308 |
+
def sample_char(self, x):
|
309 |
+
logits = self(x)
|
310 |
+
probs = F.softmax(logits[:,-1,:], dim=1)
|
311 |
+
return torch.multinomial(probs, num_samples=1).item()
|
312 |
+
|
313 |
+
gpt_nano = GPT(gpt_nano_config)
|
314 |
+
gpt_nano.load_state_dict(torch.load(gpt_nano_weights_path))
|
315 |
+
gpt_nano.eval()
|
316 |
+
|
317 |
+
##################################################################################
|
318 |
+
## Gradio App
|
319 |
+
##################################################################################
|
320 |
+
|
321 |
def generate_names(name_start, number_of_names, model):
|
322 |
if model == "MLP":
|
323 |
stoi = mlp_config['stoi']
|
|
|
325 |
elif model == "WaveNet":
|
326 |
stoi = wavenet_config['stoi']
|
327 |
window = wavenet_config['window']
|
328 |
+
elif model == "GPT Nano":
|
329 |
+
stoi = gpt_nano_config['stoi']
|
330 |
+
window = gpt_nano_config['window']
|
331 |
else:
|
332 |
raise Exception("Model not selected")
|
333 |
|
|
|
350 |
ix = mlp.sample_char(x)
|
351 |
elif model == "WaveNet":
|
352 |
ix = wavenet.sample_char(x)
|
353 |
+
elif model == "GPT Nano":
|
354 |
+
ix = gpt_nano.sample_char(x)
|
355 |
else:
|
356 |
raise Exception("Model not selected")
|
357 |
|
|
|
370 |
inputs=[
|
371 |
gr.Textbox(placeholder="Start name with..."),
|
372 |
gr.Number(value=5),
|
373 |
+
gr.Dropdown(["MLP", "WaveNet", "GPT Nano"], value="GPT Nano"),
|
374 |
],
|
375 |
outputs="text",
|
376 |
)
|