Spaces:
Running
on
Zero
Running
on
Zero
jedick
commited on
Commit
·
5cdd81a
1
Parent(s):
00c763e
Add LLM retrieval
Browse files- app.py +33 -19
- llm_retrieval.py +237 -0
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import gradio as gr
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import nltk
|
| 5 |
from retrieval import retrieve_from_pdf
|
|
|
|
| 6 |
import os
|
| 7 |
import json
|
| 8 |
from datetime import datetime
|
|
@@ -93,7 +94,9 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 93 |
with gr.Column(scale=3):
|
| 94 |
with gr.Row():
|
| 95 |
gr.Markdown("# AI4citations")
|
| 96 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 97 |
claim = gr.Textbox(
|
| 98 |
label="Claim",
|
| 99 |
info="aka hypothesis",
|
|
@@ -105,6 +108,13 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 105 |
pdf_file = gr.File(
|
| 106 |
label="Upload PDF", type="filepath", height=120
|
| 107 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
get_evidence = gr.Button(value="Get Evidence")
|
| 109 |
top_k = gr.Slider(
|
| 110 |
1,
|
|
@@ -193,7 +203,7 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 193 |
### Usage:
|
| 194 |
|
| 195 |
- Input a **Claim**, then:
|
| 196 |
-
- Upload a PDF and click **Get Evidence** OR
|
| 197 |
- Input **Evidence** statements yourself
|
| 198 |
"""
|
| 199 |
)
|
|
@@ -232,24 +242,15 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 232 |
#### *Capstone project*
|
| 233 |
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
| 234 |
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
| 235 |
-
|
| 236 |
-
)
|
| 237 |
-
gr.Markdown(
|
| 238 |
-
"""
|
| 239 |
-
#### *Models*
|
| 240 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
| 241 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
| 242 |
-
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
"""
|
| 246 |
#### *Datasets for fine-tuning*
|
| 247 |
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
| 248 |
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
| 249 |
-
"""
|
| 250 |
-
)
|
| 251 |
-
gr.Markdown(
|
| 252 |
-
"""
|
| 253 |
#### *Other sources*
|
| 254 |
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
|
| 255 |
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
|
@@ -335,6 +336,19 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 335 |
pdf_file = f"examples/retrieval/{pdf_file}"
|
| 336 |
return pdf_file, claim
|
| 337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
def append_feedback(
|
| 339 |
claim: str, evidence: str, model: str, label: str, user_label: str
|
| 340 |
) -> None:
|
|
@@ -405,8 +419,8 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 405 |
# Get evidence from PDF and run the model
|
| 406 |
gr.on(
|
| 407 |
triggers=[get_evidence.click],
|
| 408 |
-
fn=
|
| 409 |
-
inputs=[pdf_file, claim, top_k],
|
| 410 |
outputs=evidence,
|
| 411 |
).then(
|
| 412 |
fn=query_model,
|
|
@@ -465,8 +479,8 @@ with gr.Blocks(theme=my_theme, css=custom_css, head=font_awesome_html) as demo:
|
|
| 465 |
outputs=[pdf_file, claim],
|
| 466 |
api_name=False,
|
| 467 |
).then(
|
| 468 |
-
fn=
|
| 469 |
-
inputs=[pdf_file, claim, top_k],
|
| 470 |
outputs=evidence,
|
| 471 |
api_name=False,
|
| 472 |
).then(
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import nltk
|
| 5 |
from retrieval import retrieve_from_pdf
|
| 6 |
+
from llm_retrieval import retrieve_from_pdf_llm, retrieve_from_pdf_llm_fast
|
| 7 |
import os
|
| 8 |
import json
|
| 9 |
from datetime import datetime
|
|
|
|
| 94 |
with gr.Column(scale=3):
|
| 95 |
with gr.Row():
|
| 96 |
gr.Markdown("# AI4citations")
|
| 97 |
+
gr.Markdown(
|
| 98 |
+
"## *AI-powered citation verification* ([more info](https://github.com/jedick/AI4citations))"
|
| 99 |
+
)
|
| 100 |
claim = gr.Textbox(
|
| 101 |
label="Claim",
|
| 102 |
info="aka hypothesis",
|
|
|
|
| 108 |
pdf_file = gr.File(
|
| 109 |
label="Upload PDF", type="filepath", height=120
|
| 110 |
)
|
| 111 |
+
with gr.Row():
|
| 112 |
+
retrieval_method = gr.Radio(
|
| 113 |
+
choices=["BM25S", "LLM (Large)", "LLM (Fast)"],
|
| 114 |
+
value="BM25S",
|
| 115 |
+
label="Retrieval Method",
|
| 116 |
+
info="Choose between keyword-based (BM25S) or AI-based (LLM) evidence retrieval",
|
| 117 |
+
)
|
| 118 |
get_evidence = gr.Button(value="Get Evidence")
|
| 119 |
top_k = gr.Slider(
|
| 120 |
1,
|
|
|
|
| 203 |
### Usage:
|
| 204 |
|
| 205 |
- Input a **Claim**, then:
|
| 206 |
+
- Upload a PDF, select retrieval method, and click **Get Evidence** OR
|
| 207 |
- Input **Evidence** statements yourself
|
| 208 |
"""
|
| 209 |
)
|
|
|
|
| 242 |
#### *Capstone project*
|
| 243 |
- <i class="fa-brands fa-github"></i> [jedick/MLE-capstone-project](https://github.com/jedick/MLE-capstone-project) (project repo)
|
| 244 |
- <i class="fa-brands fa-github"></i> [jedick/AI4citations](https://github.com/jedick/AI4citations) (app repo)
|
| 245 |
+
#### *Claim Verification Models (text classification)*
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint](https://huggingface.co/jedick/DeBERTa-v3-base-mnli-fever-anli-scifact-citint) (fine-tuned)
|
| 247 |
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) (base)
|
| 248 |
+
#### *Evidence Retrieval Models (question answering)*
|
| 249 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [deepset/deberta-v3-large-squad2](https://huggingface.co/deepset/deberta-v3-large-squad2) (Large)
|
| 250 |
+
- <img src="https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg" style="height: 1.2em; display: inline-block;"> [distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad) (Fast)
|
|
|
|
| 251 |
#### *Datasets for fine-tuning*
|
| 252 |
- <i class="fa-brands fa-github"></i> [allenai/SciFact](https://github.com/allenai/scifact) (SciFact)
|
| 253 |
- <i class="fa-brands fa-github"></i> [ScienceNLP-Lab/Citation-Integrity](https://github.com/ScienceNLP-Lab/Citation-Integrity) (CitInt)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
#### *Other sources*
|
| 255 |
- <i class="fa-brands fa-github"></i> [xhluca/bm25s](https://github.com/xhluca/bm25s) (evidence retrieval)
|
| 256 |
- <img src="https://plos.org/wp-content/uploads/2020/01/logo-color-blue.svg" style="height: 1.4em; display: inline-block;"> [Medicine](https://doi.org/10.1371/journal.pmed.0030197), <i class="fa-brands fa-wikipedia-w"></i> [CRISPR](https://en.wikipedia.org/wiki/CRISPR) (evidence retrieval examples)
|
|
|
|
| 336 |
pdf_file = f"examples/retrieval/{pdf_file}"
|
| 337 |
return pdf_file, claim
|
| 338 |
|
| 339 |
+
def retrieve_evidence_with_method(pdf_file, claim, top_k, method):
|
| 340 |
+
"""
|
| 341 |
+
Retrieve evidence using the selected method
|
| 342 |
+
"""
|
| 343 |
+
if method == "BM25S":
|
| 344 |
+
return retrieve_from_pdf(pdf_file, claim, k=top_k)
|
| 345 |
+
elif method == "LLM (Large)":
|
| 346 |
+
return retrieve_from_pdf_llm(pdf_file, claim, k=top_k)
|
| 347 |
+
elif method == "LLM (Fast)":
|
| 348 |
+
return retrieve_from_pdf_llm_fast(pdf_file, claim, k=top_k)
|
| 349 |
+
else:
|
| 350 |
+
return f"Unknown retrieval method: {method}"
|
| 351 |
+
|
| 352 |
def append_feedback(
|
| 353 |
claim: str, evidence: str, model: str, label: str, user_label: str
|
| 354 |
) -> None:
|
|
|
|
| 419 |
# Get evidence from PDF and run the model
|
| 420 |
gr.on(
|
| 421 |
triggers=[get_evidence.click],
|
| 422 |
+
fn=retrieve_evidence_with_method,
|
| 423 |
+
inputs=[pdf_file, claim, top_k, retrieval_method],
|
| 424 |
outputs=evidence,
|
| 425 |
).then(
|
| 426 |
fn=query_model,
|
|
|
|
| 479 |
outputs=[pdf_file, claim],
|
| 480 |
api_name=False,
|
| 481 |
).then(
|
| 482 |
+
fn=retrieve_evidence_with_method,
|
| 483 |
+
inputs=[pdf_file, claim, top_k, retrieval_method],
|
| 484 |
outputs=evidence,
|
| 485 |
api_name=False,
|
| 486 |
).then(
|
llm_retrieval.py
ADDED
|
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import fitz # pip install pymupdf
|
| 3 |
+
from unidecode import unidecode
|
| 4 |
+
from nltk.tokenize import sent_tokenize
|
| 5 |
+
from transformers import pipeline, AutoTokenizer
|
| 6 |
+
import torch
|
| 7 |
+
from typing import List, Tuple, Optional
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
# Configure logging
|
| 11 |
+
logging.basicConfig(level=logging.INFO)
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LLMEvidenceRetriever:
|
| 16 |
+
"""
|
| 17 |
+
LLM-based evidence retrieval using extractive question answering
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def __init__(self, model_name: str = "deepset/deberta-v3-large-squad2"):
|
| 21 |
+
"""
|
| 22 |
+
Initialize the LLM evidence retriever
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
model_name: HuggingFace model for question answering
|
| 26 |
+
"""
|
| 27 |
+
self.model_name = model_name
|
| 28 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 29 |
+
self.qa_pipeline = pipeline(
|
| 30 |
+
"question-answering",
|
| 31 |
+
model=model_name,
|
| 32 |
+
tokenizer=self.tokenizer,
|
| 33 |
+
device=0 if torch.cuda.is_available() else -1,
|
| 34 |
+
)
|
| 35 |
+
# Maximum context length for the model
|
| 36 |
+
self.max_length = self.tokenizer.model_max_length
|
| 37 |
+
logger.info(f"Initialized LLM retriever with model: {model_name}")
|
| 38 |
+
|
| 39 |
+
def _extract_and_clean_text(self, pdf_file: str) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Extract and clean text from PDF file
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
pdf_file: Path to PDF file
|
| 45 |
+
|
| 46 |
+
Returns:
|
| 47 |
+
Cleaned text from PDF
|
| 48 |
+
"""
|
| 49 |
+
# Get PDF file as binary
|
| 50 |
+
with open(pdf_file, mode="rb") as f:
|
| 51 |
+
pdf_file_bytes = f.read()
|
| 52 |
+
|
| 53 |
+
# Extract text from the PDF
|
| 54 |
+
pdf_doc = fitz.open(stream=pdf_file_bytes, filetype="pdf")
|
| 55 |
+
pdf_text = ""
|
| 56 |
+
for page_num in range(pdf_doc.page_count):
|
| 57 |
+
page = pdf_doc.load_page(page_num)
|
| 58 |
+
pdf_text += page.get_text("text")
|
| 59 |
+
|
| 60 |
+
# Clean text
|
| 61 |
+
# Remove hyphens at end of lines
|
| 62 |
+
clean_text = re.sub("-\n", "", pdf_text)
|
| 63 |
+
# Replace remaining newline characters with space
|
| 64 |
+
clean_text = re.sub("\n", " ", clean_text)
|
| 65 |
+
# Replace unicode with ascii
|
| 66 |
+
clean_text = unidecode(clean_text)
|
| 67 |
+
|
| 68 |
+
return clean_text
|
| 69 |
+
|
| 70 |
+
def _chunk_text(self, text: str, max_chunk_size: int = 3000) -> List[str]:
|
| 71 |
+
"""
|
| 72 |
+
Split text into chunks that fit within model context window
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
text: Input text to chunk
|
| 76 |
+
max_chunk_size: Maximum size per chunk
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
List of text chunks
|
| 80 |
+
"""
|
| 81 |
+
sentences = sent_tokenize(text)
|
| 82 |
+
chunks = []
|
| 83 |
+
current_chunk = ""
|
| 84 |
+
|
| 85 |
+
for sentence in sentences:
|
| 86 |
+
# Check if adding this sentence would exceed the limit
|
| 87 |
+
if len(current_chunk) + len(sentence) + 1 <= max_chunk_size:
|
| 88 |
+
current_chunk += " " + sentence if current_chunk else sentence
|
| 89 |
+
else:
|
| 90 |
+
if current_chunk:
|
| 91 |
+
chunks.append(current_chunk.strip())
|
| 92 |
+
current_chunk = sentence
|
| 93 |
+
|
| 94 |
+
# Add the last chunk
|
| 95 |
+
if current_chunk:
|
| 96 |
+
chunks.append(current_chunk.strip())
|
| 97 |
+
|
| 98 |
+
return chunks
|
| 99 |
+
|
| 100 |
+
def _format_claim_as_question(self, claim: str) -> str:
|
| 101 |
+
"""
|
| 102 |
+
Convert a claim into a question format for better QA performance
|
| 103 |
+
|
| 104 |
+
Args:
|
| 105 |
+
claim: Input claim
|
| 106 |
+
|
| 107 |
+
Returns:
|
| 108 |
+
Question formatted for QA model
|
| 109 |
+
"""
|
| 110 |
+
# Simple heuristics to convert claims to questions
|
| 111 |
+
claim = claim.strip()
|
| 112 |
+
|
| 113 |
+
# If already a question, return as is
|
| 114 |
+
if claim.endswith("?"):
|
| 115 |
+
return claim
|
| 116 |
+
|
| 117 |
+
# Convert common claim patterns to questions
|
| 118 |
+
if claim.lower().startswith(("the ", "a ", "an ")):
|
| 119 |
+
return f"What evidence supports that {claim.lower()}?"
|
| 120 |
+
elif "is" in claim.lower() or "are" in claim.lower():
|
| 121 |
+
return f"Is it true that {claim.lower()}?"
|
| 122 |
+
elif "can" in claim.lower() or "could" in claim.lower():
|
| 123 |
+
return f"{claim}?"
|
| 124 |
+
else:
|
| 125 |
+
return f"What evidence supports the claim that {claim.lower()}?"
|
| 126 |
+
|
| 127 |
+
def retrieve_evidence(self, pdf_file: str, claim: str, k: int = 5) -> str:
|
| 128 |
+
"""
|
| 129 |
+
Retrieve evidence from PDF using LLM-based question answering
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
pdf_file: Path to PDF file
|
| 133 |
+
claim: Claim to find evidence for
|
| 134 |
+
k: Number of evidence passages to retrieve
|
| 135 |
+
|
| 136 |
+
Returns:
|
| 137 |
+
Combined evidence text
|
| 138 |
+
"""
|
| 139 |
+
try:
|
| 140 |
+
# Extract and clean text from PDF
|
| 141 |
+
clean_text = self._extract_and_clean_text(pdf_file)
|
| 142 |
+
|
| 143 |
+
# Convert claim to question format
|
| 144 |
+
question = self._format_claim_as_question(claim)
|
| 145 |
+
|
| 146 |
+
# Split text into manageable chunks
|
| 147 |
+
chunks = self._chunk_text(clean_text)
|
| 148 |
+
|
| 149 |
+
# Get answers from each chunk
|
| 150 |
+
answers = []
|
| 151 |
+
for i, chunk in enumerate(chunks):
|
| 152 |
+
try:
|
| 153 |
+
result = self.qa_pipeline(
|
| 154 |
+
question=question, context=chunk, max_answer_len=200, top_k=1
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Handle both single answer and list of answers
|
| 158 |
+
if isinstance(result, list):
|
| 159 |
+
result = result[0]
|
| 160 |
+
|
| 161 |
+
if result["score"] > 0.1: # Confidence threshold
|
| 162 |
+
# Extract surrounding context for better evidence
|
| 163 |
+
answer_text = result["answer"]
|
| 164 |
+
start_idx = max(0, chunk.find(answer_text) - 100)
|
| 165 |
+
end_idx = min(
|
| 166 |
+
len(chunk), chunk.find(answer_text) + len(answer_text) + 100
|
| 167 |
+
)
|
| 168 |
+
context = chunk[start_idx:end_idx].strip()
|
| 169 |
+
|
| 170 |
+
answers.append(
|
| 171 |
+
{"text": context, "score": result["score"], "chunk_idx": i}
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logger.warning(f"Error processing chunk {i}: {str(e)}")
|
| 176 |
+
continue
|
| 177 |
+
|
| 178 |
+
# Sort by confidence score and take top k
|
| 179 |
+
answers.sort(key=lambda x: x["score"], reverse=True)
|
| 180 |
+
top_answers = answers[:k]
|
| 181 |
+
|
| 182 |
+
# Combine evidence passages
|
| 183 |
+
if top_answers:
|
| 184 |
+
evidence_texts = [answer["text"] for answer in top_answers]
|
| 185 |
+
combined_evidence = " ".join(evidence_texts)
|
| 186 |
+
return combined_evidence
|
| 187 |
+
else:
|
| 188 |
+
logger.warning("No evidence found with sufficient confidence")
|
| 189 |
+
return "No relevant evidence found in the document."
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
logger.error(f"Error in LLM evidence retrieval: {str(e)}")
|
| 193 |
+
return f"Error retrieving evidence: {str(e)}"
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def retrieve_from_pdf_llm(pdf_file: str, query: str, k: int = 5) -> str:
|
| 197 |
+
"""
|
| 198 |
+
Wrapper function for LLM-based evidence retrieval
|
| 199 |
+
Compatible with the existing BM25S interface
|
| 200 |
+
|
| 201 |
+
Args:
|
| 202 |
+
pdf_file: Path to PDF file
|
| 203 |
+
query: Query/claim to find evidence for
|
| 204 |
+
k: Number of evidence passages to retrieve
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
Retrieved evidence text
|
| 208 |
+
"""
|
| 209 |
+
# Initialize retriever (in production, this should be cached)
|
| 210 |
+
retriever = LLMEvidenceRetriever()
|
| 211 |
+
return retriever.retrieve_evidence(pdf_file, query, k)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
# Alternative lightweight model for faster inference
|
| 215 |
+
class LightweightLLMRetriever(LLMEvidenceRetriever):
|
| 216 |
+
"""
|
| 217 |
+
Lightweight version using smaller, faster models
|
| 218 |
+
"""
|
| 219 |
+
|
| 220 |
+
def __init__(self):
|
| 221 |
+
super().__init__(model_name="distilbert-base-cased-distilled-squad")
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def retrieve_from_pdf_llm_fast(pdf_file: str, query: str, k: int = 5) -> str:
|
| 225 |
+
"""
|
| 226 |
+
Fast LLM-based evidence retrieval using lightweight model
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
pdf_file: Path to PDF file
|
| 230 |
+
query: Query/claim to find evidence for
|
| 231 |
+
k: Number of evidence passages to retrieve
|
| 232 |
+
|
| 233 |
+
Returns:
|
| 234 |
+
Retrieved evidence text
|
| 235 |
+
"""
|
| 236 |
+
retriever = LightweightLLMRetriever()
|
| 237 |
+
return retriever.retrieve_evidence(pdf_file, query, k)
|