Spaces:
Runtime error
Runtime error
# Copyright 2024 Marigold authors, PRS ETH Zurich. All rights reserved. | |
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# More information and citation instructions are available on the | |
# Marigold project website: https://marigoldmonodepth.github.io | |
# -------------------------------------------------------------------------- | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
AutoencoderTiny, | |
LCMScheduler, | |
MarigoldNormalsPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
require_torch_gpu, | |
slow, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class MarigoldNormalsPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = MarigoldNormalsPipeline | |
params = frozenset(["image"]) | |
batch_params = frozenset(["image"]) | |
image_params = frozenset(["image"]) | |
image_latents_params = frozenset(["latents"]) | |
callback_cfg_params = frozenset([]) | |
test_xformers_attention = False | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"output_type", | |
] | |
) | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=8, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
torch.manual_seed(0) | |
scheduler = LCMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
prediction_type="v_prediction", | |
set_alpha_to_one=False, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
thresholding=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"prediction_type": "normals", | |
"use_full_z_range": True, | |
} | |
return components | |
def get_dummy_tiny_autoencoder(self): | |
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"image": image, | |
"num_inference_steps": 1, | |
"processing_resolution": 0, | |
"generator": generator, | |
"output_type": "np", | |
} | |
return inputs | |
def _test_marigold_normals( | |
self, | |
generator_seed: int = 0, | |
expected_slice: np.ndarray = None, | |
atol: float = 1e-4, | |
**pipe_kwargs, | |
): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) | |
pipe_inputs.update(**pipe_kwargs) | |
prediction = pipe(**pipe_inputs).prediction | |
prediction_slice = prediction[0, -3:, -3:, -1].flatten() | |
if pipe_inputs.get("match_input_resolution", True): | |
self.assertEqual(prediction.shape, (1, 32, 32, 3), "Unexpected output resolution") | |
else: | |
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") | |
self.assertEqual( | |
max(prediction.shape[1:3]), | |
pipe_inputs.get("processing_resolution", 768), | |
"Unexpected output resolution", | |
) | |
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) | |
def test_marigold_depth_dummy_defaults(self): | |
self._test_marigold_normals( | |
expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([-0.4128, -0.5918, -0.6540, 0.2446, -0.2687, -0.4607, 0.2935, -0.0483, -0.2086]), | |
num_inference_steps=1, | |
processing_resolution=16, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=2024, | |
expected_slice=np.array([0.5731, -0.7631, -0.0199, 0.1609, -0.4628, -0.7044, 0.5761, -0.3471, -0.4498]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([0.1017, -0.6823, -0.2533, 0.1988, 0.3389, 0.8478, 0.7757, 0.5220, 0.8668]), | |
num_inference_steps=2, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([-0.2391, 0.7969, 0.6224, 0.0698, 0.5669, -0.2167, -0.1362, -0.8945, -0.5501]), | |
num_inference_steps=1, | |
processing_resolution=64, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([0.3826, -0.9634, -0.3835, 0.3514, 0.0691, -0.6182, 0.8709, 0.1590, -0.2181]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=3, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([0.2500, -0.3928, -0.2415, 0.1133, 0.2357, -0.4223, 0.9967, 0.4859, -0.1282]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=4, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=2, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): | |
self._test_marigold_normals( | |
generator_seed=0, | |
expected_slice=np.array([0.9588, 0.3326, -0.0825, -0.0994, -0.3534, -0.4302, 0.3562, 0.4421, -0.2086]), | |
num_inference_steps=1, | |
processing_resolution=16, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=False, | |
) | |
def test_marigold_depth_dummy_no_num_inference_steps(self): | |
with self.assertRaises(ValueError) as e: | |
self._test_marigold_normals( | |
num_inference_steps=None, | |
expected_slice=np.array([0.0]), | |
) | |
self.assertIn("num_inference_steps", str(e)) | |
def test_marigold_depth_dummy_no_processing_resolution(self): | |
with self.assertRaises(ValueError) as e: | |
self._test_marigold_normals( | |
processing_resolution=None, | |
expected_slice=np.array([0.0]), | |
) | |
self.assertIn("processing_resolution", str(e)) | |
class MarigoldNormalsPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def _test_marigold_normals( | |
self, | |
is_fp16: bool = True, | |
device: str = "cuda", | |
generator_seed: int = 0, | |
expected_slice: np.ndarray = None, | |
model_id: str = "prs-eth/marigold-normals-lcm-v0-1", | |
image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", | |
atol: float = 1e-4, | |
**pipe_kwargs, | |
): | |
from_pretrained_kwargs = {} | |
if is_fp16: | |
from_pretrained_kwargs["variant"] = "fp16" | |
from_pretrained_kwargs["torch_dtype"] = torch.float16 | |
pipe = MarigoldNormalsPipeline.from_pretrained(model_id, **from_pretrained_kwargs) | |
if device == "cuda": | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=device).manual_seed(generator_seed) | |
image = load_image(image_url) | |
width, height = image.size | |
prediction = pipe(image, generator=generator, **pipe_kwargs).prediction | |
prediction_slice = prediction[0, -3:, -3:, -1].flatten() | |
if pipe_kwargs.get("match_input_resolution", True): | |
self.assertEqual(prediction.shape, (1, height, width, 3), "Unexpected output resolution") | |
else: | |
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") | |
self.assertEqual( | |
max(prediction.shape[1:3]), | |
pipe_kwargs.get("processing_resolution", 768), | |
"Unexpected output resolution", | |
) | |
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) | |
def test_marigold_normals_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=False, | |
device="cpu", | |
generator_seed=0, | |
expected_slice=np.array([0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f32_cuda_G0_S1_P768_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=False, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7980, 0.7952, 0.7914, 0.7931, 0.7871, 0.7816, 0.7844, 0.7710, 0.7601]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7979, 0.7949, 0.7915, 0.7930, 0.7871, 0.7817, 0.7842, 0.7710, 0.7603]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G2024_S1_P768_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=2024, | |
expected_slice=np.array([0.8428, 0.8428, 0.8433, 0.8369, 0.8325, 0.8315, 0.8271, 0.8135, 0.8057]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S2_P768_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7095, 0.7095, 0.7104, 0.7070, 0.7051, 0.7061, 0.7017, 0.6938, 0.6914]), | |
num_inference_steps=2, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7168, 0.7163, 0.7163, 0.7080, 0.7061, 0.7046, 0.7031, 0.7007, 0.6987]), | |
num_inference_steps=1, | |
processing_resolution=512, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E3_B1_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7114, 0.7124, 0.7144, 0.7085, 0.7070, 0.7080, 0.7051, 0.6958, 0.6924]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=3, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E4_B2_M1(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7412, 0.7441, 0.7490, 0.7383, 0.7388, 0.7437, 0.7329, 0.7271, 0.7300]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=4, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=2, | |
match_input_resolution=True, | |
) | |
def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M0(self): | |
self._test_marigold_normals( | |
is_fp16=True, | |
device="cuda", | |
generator_seed=0, | |
expected_slice=np.array([0.7188, 0.7144, 0.7134, 0.7178, 0.7207, 0.7222, 0.7231, 0.7041, 0.6987]), | |
num_inference_steps=1, | |
processing_resolution=512, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=False, | |
) | |