Spaces:
Paused
Paused
File size: 26,256 Bytes
89cbc4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
#####################################################
### DOCUMENT PROCESSOR [PDF READER UTILITIES]
#####################################################
# Jonathan Wang
# ABOUT:
# This project creates an app to chat with PDFs.
# This is the PDF READER UTILITIES.
# It defines helper functions for the PDF reader,
# such as getting Keywords or finding Contact Info.
#####################################################
### TODO Board:
# Better Summarizer than T5, which has been stripped out?
# Better keywords than the RAKE+YAKE fusion we're currently using?
# Consider using GPE/GSP tagging with spacy to confirm mailing addresses?
# Handle FigureCaption somehow.
# Skip Header if it has a Page X or other page number construction.
# Detect images that are substantially overlapping according to coordinates.
# https://stackoverflow.com/questions/49897531/detect-overlapping-images-in-pil
# Keep them in the following order: no confidence score, larger image, higher confidence score
# Detect nodes whose text is substantially repeated at either the top or bottom of the page.
# Utilize the coordinates to ignore the text on the top and bottom two lines.
# Fix OCR issues with spell checking?
# Remove images that are too small in size, and overlapping with text boxes.
# Convert the List[BaseNode] -> List[BaseNode] functions into TransformComponents
#####################################################
### Imports
from __future__ import annotations
import difflib
import re
from collections import defaultdict
from copy import deepcopy
from typing import (
TYPE_CHECKING,
List,
Optional,
Tuple,
TypeVar,
)
import rapidfuzz
import regex
from llama_index.core.schema import (
BaseNode,
NodeRelationship,
RelatedNodeInfo,
)
if TYPE_CHECKING:
from unstructured.documents import elements
#####################################################
### CODE
GenericNode = TypeVar("GenericNode", bound=BaseNode)
def clean_pdf_chunk(pdf_chunk: elements.Element) -> elements.Element:
"""Given a single element of text from a pdf read by Unstructured, clean its text."""
### NOTE: Don't think it's work making this a separate TransformComponent.
# We'd still need to clean bad characters from the reader.
chunk_text = pdf_chunk.text
if (len(chunk_text) > 0):
# Clean any control characters which break the language detection for other parts of the reader.
re_bad_chars = regex.compile(r"[\p{Cc}\p{Cs}]+")
chunk_text = re_bad_chars.sub("", chunk_text)
# Remove PDF citations text
chunk_text = re.sub("\\(cid:\\d+\\)", "", chunk_text) # matches (cid:###)
# Clean whitespace and broken paragraphs
# chunk_text = clean_extra_whitespace(chunk_text)
# chunk_text = group_broken_paragraphs(chunk_text)
# Save cleaned text.
pdf_chunk.text = chunk_text
return pdf_chunk
def clean_abbreviations(pdf_chunks: list[GenericNode]) -> list[GenericNode]:
"""Remove any common abbreviations in the text which can confuse the sentence model.
Args:
pdf_chunks (List[GenericNode]): List of llama-index nodes.
Returns:
List[GenericNode]: The nodes with cleaned text, abbreviations replaced.
"""
for pdf_chunk in pdf_chunks:
text = getattr(pdf_chunk, "text", "")
if (text == ""):
continue
# No. -> Number
text = re.sub(r"\bNo\b\.\s", "Number", text, flags=re.IGNORECASE)
# Fig. -> Figure
text = re.sub(r"\bFig\b\.", "Figure", text, flags=re.IGNORECASE)
# Eq. -> Equation
text = re.sub(r"\bEq\b\.", "Equation", text, flags=re.IGNORECASE)
# Mr. -> Mr
text = re.sub(r"\bMr\b\.", "Mr", text, flags=re.IGNORECASE)
# Mrs. -> Mrs
text = re.sub(r"\bMrs\b\.", "Mrs", text, flags=re.IGNORECASE)
# Dr. -> Dr
text = re.sub(r"\bDr\b\.", "Dr", text, flags=re.IGNORECASE)
# Jr. -> Jr
text = re.sub(r"\bJr\b\.", "Jr", text, flags=re.IGNORECASE)
# etc. -> etc
text = re.sub(r"\betc\b\.", "etc", text, flags=re.IGNORECASE)
pdf_chunk.text = text
return pdf_chunks
def _remove_chunk(
pdf_chunks: list[GenericNode],
chunk_index: int | None=None,
chunk_id: str | None=None
) -> list[GenericNode]:
"""Given a list of chunks, remove the chunk at the given index or with the given id.
Args:
pdf_chunks (List[GenericNode]): The list of chunks.
chunk_index (Optional[int]): The index of the chunk to remove.
chunk_id (Optional[str]): The id of the chunk to remove.
Returns:
List[GenericNode]: The updated list of chunks, without the removed chunk.
"""
if (chunk_index is None and chunk_id is None):
msg = "_remove_chunk: Either chunk_index or chunk_id must be set."
raise ValueError(msg)
# Convert chunk_id to chunk_index
elif (chunk_index is None):
chunk = next((c for c in pdf_chunks if c.node_id == chunk_id), None)
if chunk is not None:
chunk_index = pdf_chunks.index(chunk)
else:
msg = f"_remove_chunk: No chunk found with id {chunk_id}."
raise ValueError(msg)
elif (chunk_index < 0 or chunk_index >= len(pdf_chunks)):
msg = f"_remove_chunk: Chunk {chunk_index} is out of range. Maximum index is {len(pdf_chunks) - 1}."
raise ValueError(msg)
# Update the previous-next node relationships around that index
def _node_rel_prev_next(prev_node: GenericNode, next_node: GenericNode) -> tuple[GenericNode, GenericNode]:
"""Update pre-next node relationships between two nodes."""
prev_node.relationships[NodeRelationship.NEXT] = RelatedNodeInfo(
node_id=next_node.node_id,
metadata={"filename": next_node.metadata["filename"]}
)
next_node.relationships[NodeRelationship.PREVIOUS] = RelatedNodeInfo(
node_id=prev_node.node_id,
metadata={"filename": prev_node.metadata["filename"]}
)
return (prev_node, next_node)
if (chunk_index > 0 and chunk_index < len(pdf_chunks) - 1):
pdf_chunks[chunk_index - 1], pdf_chunks[chunk_index + 1] = _node_rel_prev_next(prev_node=pdf_chunks[chunk_index - 1], next_node=pdf_chunks[chunk_index + 1])
popped_chunk = pdf_chunks.pop(chunk_index)
chunk_id = chunk_id or popped_chunk.node_id
# Remove any references to the removed chunk in node relationships or metadata
for node in pdf_chunks:
node.relationships = {k: v for k, v in node.relationships.items() if v.node_id != chunk_id}
node.metadata = {k: v for k, v in node.metadata.items() if ((isinstance(v, list) and (chunk_id in v)) or (v != chunk_id))}
return pdf_chunks
def _clean_overlap_text(
text1: str,
text2: str,
combining_text: str=" ",
min_length: int | None = 1,
max_length: int | None = 50,
overlap_threshold: float = 0.9
) -> str:
r"""Remove any overlapping text between two strings.
Args:
text1 (str): The first string.
text2 (str): The second string.
combining_text (str, optional): The text to combine the two strings with. Defaults to space (' '). Can also be \n.
min_length (int, optional): The minimum length of the overlap. Defaults to 1. None is no minimum.
max_length (int, optional): The maximum length of the overlap. Defaults to 50. None is no maximum.
overlap_threshold (float, optional): The threshold for being an overlap. Defaults to 0.8.
Returns:
str: The strings combined with the overlap removed.
"""
for overlap_len in range(min(len(text1), len(text2), (max_length or len(text1))), ((min_length or 1)-1), -1):
end_substring = text1[-overlap_len:]
start_substring = text2[:overlap_len]
similarity = difflib.SequenceMatcher(None, end_substring, start_substring).ratio()
if (similarity >= overlap_threshold):
return combining_text.join([text1[:-overlap_len], text2[overlap_len:]]).strip()
return combining_text.join([text1, text2]).strip()
def _combine_chunks(c1: GenericNode, c2: GenericNode) -> GenericNode:
"""Combine two chunks into one.
Args:
c1 (GenericNode): The first chunk.
c2 (GenericNode): The second chunk.
Returns:
GenericNode: The combined chunk.
"""
# Metadata merging
# Type merging
text_types = ["NarrativeText", "ListItem", "Formula", "UncategorizedText", "Composite-TextOnly"]
image_types = ["FigureCaption", "Image"] # things that make Image nodes.
def _combine_chunks_type(c1_type: str, c2_type: str) -> str:
"""Combine the types of two chunks.
Args:
c1_type (str): The type of the first chunk.
c2_type (str): The type of the second chunk.
Returns:
str: The type of the combined chunk.
"""
if (c1_type == c2_type):
return c1_type
elif (c1_type in text_types and c2_type in text_types):
return "Composite-TextOnly"
elif (c1_type in image_types and c2_type in image_types):
return "Image" # Add caption to image
else:
return "Composite"
c1_type = c1.metadata["type"]
c2_type = c2.metadata["type"]
c1.metadata["type"] = _combine_chunks_type(c1_type, c2_type)
# All other metadata merging
for k, v in c2.metadata.items():
if k not in c1.metadata:
c1.metadata[k] = v
# Merge lists
elif k in ["page_number", 'page_name', 'languages', 'emphasized_text_contents', 'link_texts', 'link_urls']:
if not isinstance(c1.metadata[k], list):
c1.metadata[k] = list(c1.metadata[k])
if (v not in c1.metadata[k]):
# Add to list, dedupe
c1.metadata[k].extend(v)
c1.metadata[k] = sorted(set(c1.metadata[k]))
# Text merging
c1_text = getattr(c1, "text", "")
c2_text = getattr(c2, "text", "")
if (c1_text == c2_text):
# No duplicates.
return c1
if (c1_text == "" or c2_text == ""):
c1.text = c1_text + c2_text
return c1
# Check if a sentence has been split between two chunks
# Option 1: letters
c1_text_last = c1_text[-1]
# Check if c1_text_last has a lowercase letter, digit, or punctuation that doesn't end a sentence
if (re.search(r'[\da-z\[\]\(\)\{\}\<\>\%\^\&\"\'\:\;\,\/\-\_\+\= \t\n\r]', c1_text_last)):
# We can probably combine these two texts as if they were on the same line.
c1.text = _clean_overlap_text(c1_text, c2_text, combining_text=" ")
else:
# We'll treat these as if they were on separate lines.
c1.text = _clean_overlap_text(c1_text, c2_text, combining_text="\n")
# NOTE: Relationships merging is handled in other functions, because it requires looking back at prior prior chunks.
return c1
def dedupe_title_chunks(pdf_chunks: list[GenericNode]) -> list[GenericNode]:
"""Given a list of chunks, return a list of chunks without any title duplicates.
Args:
pdf_chunks (List[BaseNode]): The list of chunks to have titles deduped.
Returns:
List[BaseNode]: The deduped list of chunks.
"""
index = 0
while (index < len(pdf_chunks)):
if (
(pdf_chunks[index].metadata["type"] in ("Title")) # is title
and (index > 0) # is not first chunk
and (pdf_chunks[index - 1].metadata["type"] in ("Title")) # previous chunk is also title
):
# if (getattr(pdf_chunks[index], 'text', None) != getattr(pdf_chunks[index - 1], 'text', '')):
# pdf_chunks[index].text = getattr(pdf_chunks[index - 1], 'text', '') + '\n' + getattr(pdf_chunks[index], 'text', '')
pdf_chunks[index] = _combine_chunks(pdf_chunks[index - 1], pdf_chunks[index])
# NOTE: We'll remove the PRIOR title, since duplicates AND child relationships are built on the CURRENT title.
# There shouldn't be any PARENT/CHILD relationships to the title that we are deleting, so this seems fine.
pdf_chunks = _remove_chunk(pdf_chunks=pdf_chunks, chunk_index=index-1)
# NOTE: don't need to shift index because we removed an element.
else:
# We don't care about any situations other than consecutive title chunks.
index += 1
return (pdf_chunks)
def combine_listitem_chunks(pdf_chunks: list[GenericNode]) -> list[GenericNode]:
"""Given a list of chunks, combine any adjacent chunks which are ListItems into one List.
Args:
pdf_chunks (List[GenericNode]): The list of chunks to combine.
Returns:
List[GenericNode]: The list of chunks with ListItems combined into one List chunk.
"""
index = 0
while (index < len(pdf_chunks)):
if (
(pdf_chunks[index].metadata["type"] == "ListItem") # is list item
and (index > 0) # is not first chunk
and (pdf_chunks[index - 1].metadata["type"] == "ListItem") # previous chunk is also list item
):
# Okay, we have a consecutive list item. Combine into one list.
# NOTE: We'll remove the PRIOR list item, since duplicates AND child relationships are built on the CURRENT list item.
# 1. Append prior list item's text to the current list item's text
# pdf_chunks[index].text = getattr(pdf_chunks[index - 1], 'text', '') + '\n' + getattr(pdf_chunks[index], 'text', '')
pdf_chunks[index] = _combine_chunks(pdf_chunks[index - 1], pdf_chunks[index])
# 2. Remove PRIOR list item
pdf_chunks.pop(index - 1)
# 3. Replace NEXT relationship from PRIOR list item with the later list item node ID, if prior prior node exists.
if (index - 2 >= 0):
pdf_chunks[index - 2].relationships[NodeRelationship.NEXT] = RelatedNodeInfo(
node_id=pdf_chunks[index].node_id,
metadata={"filename": pdf_chunks[index].metadata["filename"]}
)
# 4. Replace PREVIOUS relationship from LATER list item with the prior prior node ID, if prior prior node exists.
pdf_chunks[index].relationships[NodeRelationship.PREVIOUS] = RelatedNodeInfo(
node_id=pdf_chunks[index - 2].node_id,
metadata={"filename": pdf_chunks[index - 2].metadata['filename']}
)
# NOTE: the PARENT/CHILD relationships should be the same as the previous list item, so this seems fine.
else:
# We don't care about any situations other than consecutive list item chunks.
index += 1
return (pdf_chunks)
def remove_header_footer_repeated(
pdf_chunks_input: list[GenericNode],
window_size: int = 3,
fuzz_threshold: int = 80
) -> list[GenericNode]:
"""Given a list of chunks, remove any header/footer chunks that are repeated across pages.
Args:
pdf_chunks (List[GenericNode]): The list of chunks to process.
window_size (int): The number of chunks to consider at the beginning and end of each page.
fuzz_threshold (int): The threshold for fuzzy matching of chunk texts.
Returns:
List[GenericNode]: The list of chunks with header/footer chunks removed.
"""
nodes_to_remove = set() # id's to remove.
pdf_chunks = deepcopy(pdf_chunks_input)
# Build a dictionary of chunks by page number
chunks_by_page = defaultdict(list)
for chunk in pdf_chunks:
chunk_page_number = min(chunk.metadata["page_number"]) if isinstance(chunk.metadata["page_number"], list) else chunk.metadata["page_number"]
chunks_by_page[chunk_page_number].append(chunk)
# Get the first window_size and last window_size chunks on each page
header_candidates = defaultdict(set) # hashmap of chunk text, and set of chunk ids with that text.
footer_candidates = defaultdict(set) # hashmap of chunk text, and set of chunk ids with that text.
page_number_regex = re.compile(r"(?:-|\( ?)?\b(?:page|p\.?(?:[pg](?:\b|\.)?)?)? ?(?:\d+|\b[ivxm]+\b)\.?(?: ?-|\))?\b", re.IGNORECASE)
for chunks in chunks_by_page.values():
header_chunks = chunks[:window_size]
footer_chunks = chunks[-window_size:]
for chunk in header_chunks:
chunk_text = getattr(chunk, "text", "")
if chunk.metadata["type"] == "Header" and len(chunk_text) > 0:
chunk_text_is_pagenum_only = page_number_regex.match(chunk_text)
if chunk_text_is_pagenum_only and (len(chunk_text_is_pagenum_only.group(0)) == len(chunk_text)):
# Full match!
chunk.text = "Page Number Only"
nodes_to_remove.add(chunk.node_id)
elif chunk_text_is_pagenum_only and len(chunk_text_is_pagenum_only.group(0)) > 0:
# Remove the page number content from the chunk text for this exercise
chunk_text = page_number_regex.sub('', chunk_text)
chunk.text = chunk_text
if chunk.metadata["type"] not in ("Image", "Table") and len(chunk_text) > 0:
header_candidates[chunk_text].add(chunk.node_id)
for chunk in footer_chunks:
chunk_text = getattr(chunk, "text", "")
if chunk.metadata["type"] == "Footer" and len(chunk_text) > 0:
chunk_text_is_pagenum_only = page_number_regex.match(chunk_text)
if chunk_text_is_pagenum_only and (len(chunk_text_is_pagenum_only.group(0)) == len(chunk_text)):
# Full match!
chunk.text = "Page Number Only"
nodes_to_remove.add(chunk.node_id)
elif chunk_text_is_pagenum_only and len(chunk_text_is_pagenum_only.group(0)) > 0:
# Remove the page number content from the chunk text for this exercise
chunk_text = page_number_regex.sub('', chunk_text)
chunk.text = chunk_text
if chunk.metadata["type"] not in ("Image", "Table") and len(chunk_text) > 0:
footer_candidates[chunk_text].add(chunk.node_id)
# Identify any texts which are too similar to other header texts.
header_texts = list(header_candidates.keys())
header_distance_matrix = rapidfuzz.process.cdist(header_texts, header_texts, scorer=rapidfuzz.fuzz.ratio, score_cutoff=fuzz_threshold)
footer_texts = list(footer_candidates.keys())
footer_distance_matrix = rapidfuzz.process.cdist(footer_texts, footer_texts, scorer=rapidfuzz.fuzz.ratio, score_cutoff=fuzz_threshold)
# Combine header candidates which are too similar to each other in the distance matrix
for i in range(len(header_distance_matrix)-1):
for j in range(i+1, len(header_distance_matrix)):
if i == j:
continue
if header_distance_matrix[i][j] >= fuzz_threshold:
header_candidates[header_texts[i]].update(header_candidates[header_texts[j]])
header_candidates[header_texts[j]].update(header_candidates[header_texts[i]])
for i in range(len(footer_distance_matrix)-1):
for j in range(i+1, len(footer_distance_matrix)):
if i == j:
continue
if footer_distance_matrix[i][j] >= fuzz_threshold:
footer_candidates[footer_texts[i]].update(footer_candidates[footer_texts[j]])
footer_candidates[footer_texts[j]].update(footer_candidates[footer_texts[i]])
headers_to_remove = set()
for chunk_ids in header_candidates.values():
if len(chunk_ids) > 1:
headers_to_remove.update(chunk_ids)
footers_to_remove = set()
for chunk_ids in footer_candidates.values():
if len(chunk_ids) > 1:
footers_to_remove.update(chunk_ids)
nodes_to_remove = nodes_to_remove.union(headers_to_remove.union(footers_to_remove))
for node_id in nodes_to_remove:
pdf_chunks = _remove_chunk(pdf_chunks=pdf_chunks, chunk_id=node_id)
return pdf_chunks
def remove_overlap_images(pdf_chunks: list[GenericNode]) -> list[GenericNode]:
# TODO(Jonathan Wang): Implement this function to remove images which are completely overlapping each other
# OR... get a better dang reader!
raise NotImplementedError
def chunk_by_header(
pdf_chunks_in: list[GenericNode],
combine_text_under_n_chars: int = 1024,
multipage_sections: bool = True,
# ) -> Tuple[List[GenericNode], List[GenericNode]]:
) -> list[GenericNode]:
"""Combine chunks together that are part of the same header and have similar meaning.
Args:
pdf_chunks (List[GenericNode]): List of chunks to be combined.
Returns:
List[GenericNode]: List of combined chunks.
List[GenericNode]: List of original chunks, with node references updated.
"""
# TODO(Jonathan Wang): Handle semantic chunking between elements within a Header chunk.
# TODO(Jonathan Wang): Handle splitting element chunks if they are over `max_characters` in length (does this ever really happen?)
# TODO(Jonathan Wang): Handle relationships between nodes.
pdf_chunks = deepcopy(pdf_chunks_in)
output = []
id_to_index = {}
index = 0
# Pass 1: Combine chunks together that are part of the same title chunk.
while (index < len(pdf_chunks)):
chunk = pdf_chunks[index]
if (chunk.metadata["type"] in ["Header", "Footer", "Image", "Table"]):
# These go immediately into the semantic title chunks and also reset the new node.
# Let's add a newline to distinguish from any other content.
if (chunk.metadata["type"] in ["Header", "Footer", "Table"]):
chunk.text = getattr(chunk, "text", "") + "\n"
output.append(chunk)
index += 1
continue
# Make a new node if we have a new title (or if we don't have a title).
if (
chunk.metadata["type"] == "Title"
):
# We're good, this node can stay as a TitleChunk.
chunk.metadata['type'] = 'Composite'
# if (not isinstance(chunk.metadata['page number'], list)):
# chunk.metadata['page number'] = [chunk.metadata['page number']]
# Let's add a newline to distinguish the title from the content.
setattr(chunk, 'text', getattr(chunk, 'text', '') + "\n")
output.append(chunk)
id_to_index[chunk.id_] = len(output) - 1
index += 1
continue
elif (chunk.metadata.get('parent_id', None) in id_to_index):
# This chunk is part of the same title as a prior chunk.
# Add this text into the prior title node.
jndex = id_to_index[chunk.metadata['parent_id']]
# if (not isinstance(output[jndex].metadata['page number'], list)):
# output[jndex].metadata['page number'] = [chunk.metadata['page number']]
output[jndex] = _combine_chunks(output[jndex], chunk)
# output[jndex].text = getattr(output[jndex], 'text', '') + '\n' + getattr(chunk, 'text', '')
# output[jndex].metadata['page number'] = list(set(output[jndex].metadata['page number'] + [chunk.metadata['page number']]))
# output[jndex].metadata['languages'] = list(set(output[jndex].metadata['languages'] + chunk.metadata['languages']))
pdf_chunks.remove(chunk)
continue
elif (
(chunk.metadata.get('parent_id', None) is None)
and (
len(getattr(chunk, 'text', '')) > combine_text_under_n_chars # big enough text section to stand alone
or (len(id_to_index.keys()) <= 0) # no prior title
)
):
# Okay, so either we don't have a title, or it was interrupted by an image / table.
# This chunk can stay as a TextChunk.
chunk.metadata['type'] = 'Composite-TextOnly'
# if (not isinstance(chunk.metadata['page number'], list)):
# chunk.metadata['page number'] = [chunk.metadata['page number']]
output.append(chunk)
id_to_index[chunk.id_] = len(output) - 1
index += 1
continue
else:
# Add the text to the prior node that isn't a table or image.
jndex = len(output) - 1
while (
(jndex >= 0)
and (output[jndex].metadata['type'] in ['Table', 'Image'])
):
# for title_chunk in output:
# print(f'''{title_chunk.id_}: {title_chunk.metadata['type']}, text: {title_chunk.text}, parent: {title_chunk.metadata['parent_id']}''')
jndex -= 1
if (jndex < 0):
raise Exception(f'''Prior title chunk not found: {index}, {chunk.metadata.get('parent_id', None)}''')
# Add this text into the prior title node.
# if (not isinstance(output[jndex].metadata['page number'], list)):
# output[jndex].metadata['page number'] = [chunk.metadata['page number']]
output[jndex] = _combine_chunks(output[jndex], chunk)
# output[jndex].text = getattr(output[jndex], 'text', '') + ' ' + getattr(chunk, 'text', '')
# output[jndex].metadata['page number'] = list(set(output[jndex].metadata['page number'] + [chunk.metadata['page number']]))
# output[jndex].metadata['languages'] = list(set(output[jndex].metadata['languages'] + chunk.metadata['languages']))
pdf_chunks.remove(chunk)
# TODO: Update relationships between nodes.
continue
return (output)
### TODO:
# Merge images together that are substantially overlapping.
# Favour image with no confidence score. (these come straight from pdf).
# Favour the larger image over the smaller one.
# Favour the image with higher confidence score.
def merge_images() -> None:
pass
|