Spaces:
Sleeping
Sleeping
File size: 7,943 Bytes
f053717 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import gradio as gr
import pandas as pd
import os
import uuid
import datetime
import logging
from huggingface_hub import hf_hub_download, upload_file, list_repo_tree
from dotenv import load_dotenv
load_dotenv()
# Configuration
HF_INPUT_DATASET = os.getenv("HF_INPUT_DATASET")
HF_INPUT_DATASET_PATH = os.getenv("HF_INPUT_DATASET_PATH")
HF_INPUT_DATASET_ID_COLUMN = os.getenv("HF_INPUT_DATASET_ID_COLUMN")
HF_INPUT_DATASET_COLUMN_A = os.getenv("HF_INPUT_DATASET_COLUMN_A")
HF_INPUT_DATASET_COLUMN_B = os.getenv("HF_INPUT_DATASET_COLUMN_B")
HF_OUTPUT_DATASET = os.getenv("HF_OUTPUT_DATASET")
HF_OUTPUT_DATASET_DIR = os.getenv("HF_OUTPUT_DATASET_DIR")
INSTRUCTIONS = """
# Pairwise Model Output Labeling
Please compare the two model outputs shown below and select which one you think is better.
- Choose "Left is better" if the left output is superior
- Choose "Right is better" if the right output is superior
- Choose "Tie" if they are equally good or bad
- Choose "Can't choose" if you cannot make a determination
"""
SAVE_EVERY_N_EXAMPLES = 5
class PairwiseLabeler:
def __init__(self):
self.current_index = 0
self.results = []
self.df = self.read_hf_dataset()
def __len__(self):
return len(self.df)
def read_hf_dataset(self) -> pd.DataFrame:
try:
local_file = hf_hub_download(repo_id=HF_INPUT_DATASET, repo_type="dataset", filename=HF_INPUT_DATASET_PATH)
if local_file.endswith(".json"):
return pd.read_json(local_file)
elif local_file.endswith(".jsonl"):
return pd.read_json(local_file, orient="records",lines=True)
elif local_file.endswith(".csv"):
return pd.read_csv(local_file)
elif local_file.endswith(".parquet"):
return pd.read_parquet(local_file)
else:
raise ValueError(f"Unsupported file type: {local_file}")
except Exception as e:
# Fallback to sample data if loading fails
logging.error(f"Couldn't read HF dataset from {HF_INPUT_DATASET_PATH}. Using sample data instead.")
sample_data = {
HF_INPUT_DATASET_ID_COLUMN: [f"sample_{i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
HF_INPUT_DATASET_COLUMN_A: [f"This is sample generation A {i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
HF_INPUT_DATASET_COLUMN_B: [f"This is sample generation B {i}" for i in range(SAVE_EVERY_N_EXAMPLES)],
}
return pd.DataFrame(sample_data)
def get_current_pair(self):
if self.current_index >= len(self.df):
return None, None, None
item = self.df.iloc[self.current_index]
item_id = item.get(HF_INPUT_DATASET_ID_COLUMN, f"item_{self.current_index}")
left_text = item.get(HF_INPUT_DATASET_COLUMN_A, "")
right_text = item.get(HF_INPUT_DATASET_COLUMN_B, "")
return item_id, left_text, right_text
def submit_judgment(self, item_id, left_text, right_text, choice):
if item_id is None:
return item_id, left_text, right_text, self.current_index
# Record the judgment
result = {
"item_id": item_id,
"generation_a": left_text,
"generation_b": right_text,
"judgment": choice,
"timestamp": datetime.datetime.now().isoformat(),
"labeler_id": str(uuid.uuid4())[:8] # Anonymous ID for the labeling session
}
self.results.append(result)
# Move to next item
self.current_index += 1
# Save results periodically
if len(self.results) % SAVE_EVERY_N_EXAMPLES == 0:
self.save_results()
# Get next pair
next_id, next_left, next_right = self.get_current_pair()
return next_id, next_left, next_right, self.current_index
def save_results(self):
if not self.results:
return
try:
# Convert results to dataset format
results_df = pd.DataFrame(self.results)
results_df.to_json("temp.jsonl", orient="records", lines=True)
# Push to Hugging Face Hub
try:
num_files = len([_ for _ in list_repo_tree(repo_id=HF_OUTPUT_DATASET, repo_type="dataset", path_in_repo=HF_OUTPUT_DATASET_DIR)])
except Exception as e:
num_files = 0
upload_file(repo_id=HF_OUTPUT_DATASET, repo_type="dataset", path_in_repo=os.path.join(HF_OUTPUT_DATASET_DIR, f"results_{num_files+1}.jsonl"), path_or_fileobj="temp.jsonl")
os.remove("temp.jsonl")
self.results = []
logging.info(f"Saved {len(self.results)} results to {HF_OUTPUT_DATASET}")
except Exception as e:
logging.error(f"Error saving results: {e}")
# Initialize the labeler
labeler = PairwiseLabeler()
# Get the first pair
initial_id, initial_left, initial_right = labeler.get_current_pair()
with gr.Blocks() as app:
gr.Markdown(INSTRUCTIONS)
with gr.Row():
with gr.Column():
left_output = gr.Textbox(
value=initial_left,
label="Model Output A",
lines=10,
interactive=False
)
with gr.Column():
right_output = gr.Textbox(
value=initial_right,
label="Model Output B",
lines=10,
interactive=False
)
item_id = gr.Textbox(value=initial_id, visible=False)
with gr.Row():
left_btn = gr.Button("⬅️ A is better", variant="primary")
right_btn = gr.Button("➡️ B is better", variant="primary")
tie_btn = gr.Button("🤝 Tie", variant="primary")
cant_choose_btn = gr.Button("🤔 Can't choose")
current_sample_sld = gr.Slider(minimum=0, maximum=len(labeler), step=1,
value=labeler.current_index,
interactive=False,
label='sample_ind',
info=f"Samples labeled (out of {len(labeler)})",
show_label=False,
container=False,
scale=5)
def judge_left(item_id, left_text, right_text):
return judge("A is better", item_id, left_text, right_text)
def judge_right(item_id, left_text, right_text):
return judge("B is better", item_id, left_text, right_text)
def judge_tie(item_id, left_text, right_text):
return judge("Tie", item_id, left_text, right_text)
def judge_cant_choose(item_id, left_text, right_text):
return judge("Can't choose", item_id, left_text, right_text)
def judge(choice, item_id, left_text, right_text):
new_id, new_left, new_right, new_index = labeler.submit_judgment(
item_id, left_text, right_text, choice
)
return new_id, new_left, new_right, new_index
left_btn.click(
judge_left,
inputs=[item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
right_btn.click(
judge_right,
inputs=[item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
tie_btn.click(
judge_tie,
inputs=[item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
cant_choose_btn.click(
judge_cant_choose,
inputs=[item_id, left_output, right_output],
outputs=[item_id, left_output, right_output, current_sample_sld]
)
if __name__ == "__main__":
app.launch()
|