# Prédit 33% environ partout (dans le cas 3 classes) # class EmotionClassifier(nn.Module): # def __init__(self, feature_dim, num_labels): # super(EmotionClassifier, self).__init__() # self.fc1 = nn.Linear(feature_dim, 256) # self.relu = nn.ReLU() # self.dropout = nn.Dropout(0.3) # self.fc2 = nn.Linear(256, num_labels) # def forward(self, x): # x = self.fc1(x) # x = self.relu(x) # x = self.dropout(x) # return self.fc2(x) import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): """Mécanisme d’attention permettant de pondérer l’importance des caractéristiques audio""" def __init__(self, hidden_dim): super(Attention, self).__init__() self.attention_weights = nn.Linear(hidden_dim, 1) def forward(self, lstm_output): # lstm_output: (batch_size, sequence_length, hidden_dim) attention_scores = self.attention_weights(lstm_output) # (batch_size, sequence_length, 1) attention_weights = torch.softmax(attention_scores, dim=1) # Normalisation softmax weighted_output = lstm_output * attention_weights # Pondération des features return weighted_output.sum(dim=1) # Somme pondérée sur la séquence class EmotionClassifier(nn.Module): """Modèle de classification des émotions basé sur BiLSTM et attention""" def __init__(self, feature_dim, num_labels, hidden_dim=128): super(EmotionClassifier, self).__init__() self.lstm = nn.LSTM(feature_dim, hidden_dim, batch_first=True, bidirectional=True) self.attention = Attention(hidden_dim * 2) # Bidirectionnel → hidden_dim * 2 self.fc = nn.Linear(hidden_dim * 2, num_labels) # Couche de classification finale def forward(self, x): lstm_out, _ = self.lstm(x) # (batch_size, sequence_length, hidden_dim*2) attention_out = self.attention(lstm_out) # (batch_size, hidden_dim*2) logits = self.fc(attention_out) # (batch_size, num_labels) return logits