import os import torch import torch.nn as nn import torch.optim as optim import soundfile as sf import torchaudio import numpy as np from datasets import Dataset from transformers import Wav2Vec2Model, Wav2Vec2Processor from dotenv import load_dotenv from sklearn.metrics import accuracy_score # Charger .env pour Hugging Face API Key load_dotenv() HF_API_KEY = os.getenv("HF_API_KEY") if not HF_API_KEY: raise ValueError("Le token Hugging Face n'a pas été trouvé dans .env") # Définition des labels pour la classification des émotions LABELS = {"colere": 0, "neutre": 1, "joie": 2} NUM_LABELS = len(LABELS) # Charger le processeur et le modèle pour l'extraction de features model_name = "facebook/wav2vec2-large-xlsr-53-french" device = "cuda" if torch.cuda.is_available() else "cpu" processor = Wav2Vec2Processor.from_pretrained(model_name) feature_extractor = Wav2Vec2Model.from_pretrained(model_name).to(device) # Resampleur pour convertir en 16 kHz resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000) # Définition du classifieur amélioré class EmotionClassifier(nn.Module): def __init__(self, feature_dim, num_labels): super(EmotionClassifier, self).__init__() self.fc1 = nn.Linear(feature_dim, 512) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.3) self.fc2 = nn.Linear(512, num_labels) def forward(self, x): x = self.fc1(x) x = self.relu(x) x = self.dropout(x) return self.fc2(x) # Instancier le classifieur classifier = EmotionClassifier(feature_extractor.config.hidden_size, NUM_LABELS).to(device) # Charger les fichiers audio et leurs labels def load_audio_data(data_dir): data = [] for label_name, label_id in LABELS.items(): label_dir = os.path.join(data_dir, label_name) for file in os.listdir(label_dir): if file.endswith(".wav"): file_path = os.path.join(label_dir, file) data.append({"path": file_path, "label": label_id}) return Dataset.from_list(data) # Chargement du dataset data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "data")) ds = load_audio_data(data_dir) # Charger les fichiers audio avec SoundFile et rééchantillonner à 16 kHz def preprocess_audio(batch): speech, sample_rate = sf.read(batch["path"], dtype="float32") if sample_rate != 16000: speech = torch.tensor(speech).unsqueeze(0) speech = resampler(speech).squeeze(0).numpy() batch["speech"] = speech.tolist() # Convertir en liste pour éviter les erreurs de PyArrow batch["sampling_rate"] = 16000 return batch ds = ds.map(preprocess_audio) # Vérifier la distribution des longueurs des fichiers audio lengths = [len(sample["speech"]) for sample in ds] max_length = int(np.percentile(lengths, 95)) # Transformer l'audio en features utilisables par le modèle def prepare_features(batch): features = processor( batch["speech"], sampling_rate=16000, padding=True, truncation=True, max_length=max_length, return_tensors="pt" ) batch["input_values"] = features.input_values.squeeze(0) batch["label"] = torch.tensor(batch["label"], dtype=torch.long) return batch ds = ds.map(prepare_features) # Diviser les données en train et test ds = ds.train_test_split(test_size=0.2) train_ds = ds["train"] test_ds = ds["test"] # Fonction d'entraînement avec sauvegarde du meilleur modèle def train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=20, batch_size=8): optimizer = optim.AdamW(classifier.parameters(), lr=2e-5, weight_decay=0.01) loss_fn = nn.CrossEntropyLoss() best_accuracy = 0.0 # Variable pour stocker la meilleure accuracy for epoch in range(epochs): classifier.train() total_loss, correct = 0, 0 batch_count = 0 for i in range(0, len(train_ds), batch_size): batch = train_ds[i: i + batch_size] optimizer.zero_grad() input_values = processor( batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True, truncation=True, max_length=max_length ).input_values.to(device) with torch.no_grad(): features = feature_extractor(input_values).last_hidden_state.mean(dim=1) logits = classifier(features) labels = torch.tensor(batch["label"], dtype=torch.long, device=device) if labels.numel() == 0: continue loss = loss_fn(logits, labels) loss.backward() optimizer.step() total_loss += loss.item() correct += (logits.argmax(dim=-1) == labels).sum().item() batch_count += 1 train_acc = correct / len(train_ds) # Sauvegarde du modèle seulement si la précision s'améliore if train_acc > best_accuracy: best_accuracy = train_acc torch.save({ "classifier_state_dict": classifier.state_dict(), "feature_extractor_state_dict": feature_extractor.state_dict(), "processor": processor }, "acc_model.pth") print(f"✅ Nouveau meilleur modèle sauvegardé ! Accuracy: {best_accuracy:.4f}") print(f"Epoch {epoch+1}/{epochs} - Loss: {total_loss/batch_count:.4f} - Accuracy: {train_acc:.4f}") return classifier # Entraînement trained_classifier = train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=20, batch_size=8) print("✅ Entraînement terminé, le meilleur modèle a été sauvegardé !")