Spaces:
Sleeping
Sleeping
Added real-time emotion detection over an uploaded audio file
Browse files- .gitignore +1 -0
- app.py +3 -0
- src/model/predict.py +29 -16
- src/model/transcriber.py +8 -5
- views/application.py +143 -6
- views/real_time.py +35 -48
.gitignore
CHANGED
@@ -178,6 +178,7 @@ dataset/
|
|
178 |
old/
|
179 |
*.wav
|
180 |
data/*
|
|
|
181 |
|
182 |
# Mac
|
183 |
.DS_Store
|
|
|
178 |
old/
|
179 |
*.wav
|
180 |
data/*
|
181 |
+
*.pth
|
182 |
|
183 |
# Mac
|
184 |
.DS_Store
|
app.py
CHANGED
@@ -3,6 +3,9 @@ from streamlit_option_menu import option_menu
|
|
3 |
from views.application import application
|
4 |
from views.about import about
|
5 |
|
|
|
|
|
|
|
6 |
# Set the logo
|
7 |
st.sidebar.image("img/logo.png", use_container_width=True)
|
8 |
|
|
|
3 |
from views.application import application
|
4 |
from views.about import about
|
5 |
|
6 |
+
if "model_loaded" not in st.session_state:
|
7 |
+
st.session_state.model_loaded = None
|
8 |
+
|
9 |
# Set the logo
|
10 |
st.sidebar.image("img/logo.png", use_container_width=True)
|
11 |
|
src/model/predict.py
CHANGED
@@ -1,35 +1,48 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import Wav2Vec2Processor
|
3 |
-
from model import Wav2Vec2EmotionClassifier
|
4 |
import librosa
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Charger le modèle et le processeur
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
model
|
12 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
emotion_labels = ["joie", "colère", "neutre"]
|
15 |
|
16 |
def predict_emotion(audio_path, output_probs=False, sampling_rate=16000):
|
17 |
-
waveform, _ = librosa.load(audio_path, sr=sampling_rate)
|
18 |
-
input_values = processor(
|
19 |
input_values = input_values.to(device)
|
20 |
-
|
21 |
with torch.no_grad():
|
22 |
outputs = model(input_values)
|
23 |
-
|
24 |
-
if output_probs:
|
25 |
# Appliquer softmax pour obtenir des probabilités
|
26 |
-
probabilities = torch.nn.functional.softmax(outputs
|
27 |
|
28 |
# Convertir en numpy array et prendre le premier (et seul) élément
|
29 |
probabilities = probabilities[0].detach().cpu().numpy()
|
30 |
|
31 |
# Créer un dictionnaire associant chaque émotion à sa probabilité
|
32 |
emotion_probabilities = {emotion: prob for emotion, prob in zip(emotion_labels, probabilities)}
|
|
|
|
|
33 |
return emotion_probabilities
|
34 |
else:
|
35 |
# Obtenir l'émotion la plus probable (i.e. la prédiction)
|
@@ -38,6 +51,6 @@ def predict_emotion(audio_path, output_probs=False, sampling_rate=16000):
|
|
38 |
|
39 |
|
40 |
# Exemple d'utilisation
|
41 |
-
audio_test = "data/n1ac.wav"
|
42 |
-
emotion = predict_emotion(audio_test)
|
43 |
-
print(f"Émotion détectée : {emotion}")
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor
|
4 |
+
from src.model.emotion_classifier import Wav2Vec2EmotionClassifier
|
5 |
import librosa
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
if "model_loaded" not in st.session_state:
|
9 |
+
st.session_state.model_loaded = None
|
10 |
|
|
|
11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
# Charger le modèle et le processeur
|
13 |
+
if st.session_state.model_loaded is None:
|
14 |
+
st.session_state.processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53-french")
|
15 |
+
st.session_state.model = Wav2Vec2EmotionClassifier()
|
16 |
+
st.session_state.model.load_state_dict(torch.load(os.path.join("src","model","wav2vec2_emotion.pth"), map_location=torch.device('cpu')), strict=False)
|
17 |
+
st.session_state.model_loaded = True
|
18 |
+
|
19 |
+
if st.session_state.model_loaded:
|
20 |
+
processor = st.session_state.processor
|
21 |
+
model = st.session_state.model
|
22 |
+
model.to(device)
|
23 |
+
model.eval()
|
24 |
|
25 |
emotion_labels = ["joie", "colère", "neutre"]
|
26 |
|
27 |
def predict_emotion(audio_path, output_probs=False, sampling_rate=16000):
|
28 |
+
# waveform, _ = librosa.load(audio_path, sr=sampling_rate)
|
29 |
+
input_values = processor(audio_path, return_tensors="pt", sampling_rate=sampling_rate).input_values
|
30 |
input_values = input_values.to(device)
|
31 |
+
|
32 |
with torch.no_grad():
|
33 |
outputs = model(input_values)
|
34 |
+
|
35 |
+
if output_probs:
|
36 |
# Appliquer softmax pour obtenir des probabilités
|
37 |
+
probabilities = torch.nn.functional.softmax(outputs, dim=-1)
|
38 |
|
39 |
# Convertir en numpy array et prendre le premier (et seul) élément
|
40 |
probabilities = probabilities[0].detach().cpu().numpy()
|
41 |
|
42 |
# Créer un dictionnaire associant chaque émotion à sa probabilité
|
43 |
emotion_probabilities = {emotion: prob for emotion, prob in zip(emotion_labels, probabilities)}
|
44 |
+
# emotion_probabilities = {"emotions": [emotion for emotion in emotion_labels],
|
45 |
+
# "probabilities": [prob for prob in probabilities]}
|
46 |
return emotion_probabilities
|
47 |
else:
|
48 |
# Obtenir l'émotion la plus probable (i.e. la prédiction)
|
|
|
51 |
|
52 |
|
53 |
# Exemple d'utilisation
|
54 |
+
# audio_test = "data/n1ac.wav"
|
55 |
+
# emotion = predict_emotion(audio_test)
|
56 |
+
# print(f"Émotion détectée : {emotion}")
|
src/model/transcriber.py
CHANGED
@@ -1,13 +1,16 @@
|
|
|
|
1 |
import torch
|
2 |
from transformers import Wav2Vec2Processor
|
3 |
from src.model.emotion_classifier import Wav2Vec2EmotionClassifier
|
4 |
import librosa
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
|
|
|
|
11 |
|
12 |
|
13 |
def transcribe_audio(audio, sampling_rate=16000):
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
from transformers import Wav2Vec2Processor
|
4 |
from src.model.emotion_classifier import Wav2Vec2EmotionClassifier
|
5 |
import librosa
|
6 |
|
7 |
+
# Charger le modèle et le processeur
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
# if st.
|
10 |
+
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53-french")
|
11 |
+
model = Wav2Vec2EmotionClassifier()
|
12 |
+
model.load_state_dict(torch.load(os.path.join("src","model","wav2vec2_emotion.pth"), map_location=torch.device('cpu')), strict=False)
|
13 |
+
model.to(device)
|
14 |
|
15 |
|
16 |
def transcribe_audio(audio, sampling_rate=16000):
|
views/application.py
CHANGED
@@ -1,11 +1,20 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from st_audiorec import st_audiorec
|
3 |
import datetime
|
4 |
import os
|
|
|
|
|
5 |
from src.model.transcriber import transcribe_audio
|
|
|
|
|
6 |
|
7 |
DIRECTORY = "audios"
|
8 |
FILE_NAME = "audio.wav"
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def application():
|
11 |
st.title("SISE ultimate challenge")
|
@@ -25,12 +34,141 @@ def application():
|
|
25 |
st.header("⬆️ Upload Audio Record")
|
26 |
st.write("Here you can upload a pre-recorded audio.")
|
27 |
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "ogg"])
|
|
|
28 |
if audio_file is not None:
|
29 |
|
30 |
-
with open(
|
31 |
f.write(audio_file.getbuffer())
|
32 |
st.success(f"Saved file: {FILE_NAME}")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
with tab2:
|
35 |
st.header("🔈 Realtime Audio Record")
|
36 |
st.write("Here you can record an audio.")
|
@@ -52,17 +190,16 @@ def application():
|
|
52 |
############################# A décommenté quand ce sera débogué
|
53 |
if st.button("Transcribe", key="transcribe-button"):
|
54 |
# # Fonction pour transcrire l'audio
|
55 |
-
|
56 |
|
57 |
# # Charger et transcrire l'audio
|
58 |
# # audio, rate = load_audio(audio_file_path) # (re)chargement de l'audio si nécessaire
|
59 |
-
|
60 |
|
61 |
# # Afficher la transcription
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
st.success("Audio registered successfully.")
|
66 |
# if save:
|
67 |
# file_path = "transcript.txt"
|
68 |
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from st_audiorec import st_audiorec
|
4 |
import datetime
|
5 |
import os
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import librosa
|
8 |
from src.model.transcriber import transcribe_audio
|
9 |
+
from src.model.predict import predict_emotion
|
10 |
+
|
11 |
|
12 |
DIRECTORY = "audios"
|
13 |
FILE_NAME = "audio.wav"
|
14 |
+
CHUNK = 1024
|
15 |
+
# FORMAT = pyaudio.paInt16
|
16 |
+
CHANNELS = 1
|
17 |
+
RATE = 16000
|
18 |
|
19 |
def application():
|
20 |
st.title("SISE ultimate challenge")
|
|
|
34 |
st.header("⬆️ Upload Audio Record")
|
35 |
st.write("Here you can upload a pre-recorded audio.")
|
36 |
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "ogg"])
|
37 |
+
|
38 |
if audio_file is not None:
|
39 |
|
40 |
+
with open(os.path.join(DIRECTORY,FILE_NAME), "wb") as f:
|
41 |
f.write(audio_file.getbuffer())
|
42 |
st.success(f"Saved file: {FILE_NAME}")
|
43 |
|
44 |
+
|
45 |
+
start_inference = st.button("Start emotion recogniton","inf_on_upl_btn")
|
46 |
+
emotion_labels = ["joie", "colère", "neutre"]
|
47 |
+
colors = ['#f6d60a', '#f71c1c', '#cac8c8']
|
48 |
+
|
49 |
+
if start_inference:
|
50 |
+
# Configuration Streamlit
|
51 |
+
with st.spinner("Real-time emotion analysis..."):
|
52 |
+
# uploaded_file = st.file_uploader("Choisissez un fichier audio", type=["wav", "mp3"])
|
53 |
+
|
54 |
+
if audio_file is not None:
|
55 |
+
# Charger et rééchantillonner l'audio
|
56 |
+
audio, sr = librosa.load(audio_file, sr=RATE)
|
57 |
+
# chunk = audio_file
|
58 |
+
|
59 |
+
# Paramètres de la fenêtre glissante
|
60 |
+
window_size = 1 # en secondes
|
61 |
+
hop_length = 0.5 # en secondes
|
62 |
+
|
63 |
+
# Créer un graphique en temps réel
|
64 |
+
fig, ax = plt.subplots()
|
65 |
+
lines = [ax.plot([], [], label=emotion)[0] for emotion in emotion_labels]
|
66 |
+
ax.set_ylim(0, 1)
|
67 |
+
ax.set_xlim(0, len(audio) / sr)
|
68 |
+
ax.set_xlabel("Temps (s)")
|
69 |
+
ax.set_ylabel("Probabilité")
|
70 |
+
ax.legend()
|
71 |
+
|
72 |
+
chart = st.pyplot(fig)
|
73 |
+
|
74 |
+
scores = [[],[],[]] # 3 émotions pour l'instant
|
75 |
+
|
76 |
+
# Traitement par fenêtre glissante
|
77 |
+
for i in range(0, len(audio), int(hop_length * sr)):
|
78 |
+
chunk = audio[i:i + int(window_size * sr)]
|
79 |
+
if len(chunk) < int(window_size * sr):
|
80 |
+
break
|
81 |
+
|
82 |
+
emotion_scores = predict_emotion(chunk, output_probs=True, sampling_rate=RATE)
|
83 |
+
|
84 |
+
# Mettre à jour le graphique
|
85 |
+
for emotion, line in zip(emotion_labels, lines):
|
86 |
+
xdata = list(line.get_xdata())
|
87 |
+
ydata = list(line.get_ydata())
|
88 |
+
xdata.append(i / sr)
|
89 |
+
ydata.append(emotion_scores[emotion])
|
90 |
+
scores[list(emotion_scores).index(emotion)].append(emotion_scores[emotion])
|
91 |
+
line.set_data(xdata, ydata)
|
92 |
+
|
93 |
+
ax.relim()
|
94 |
+
ax.autoscale_view()
|
95 |
+
chart.pyplot(fig, use_container_width=True)
|
96 |
+
|
97 |
+
# Prepare the styling
|
98 |
+
st.markdown("""
|
99 |
+
<style>
|
100 |
+
.colored-box {
|
101 |
+
padding: 10px;
|
102 |
+
border-radius: 5px;
|
103 |
+
color: white;
|
104 |
+
font-weight: bold;
|
105 |
+
text-align: center;
|
106 |
+
}
|
107 |
+
</style>
|
108 |
+
"""
|
109 |
+
, unsafe_allow_html=True)
|
110 |
+
|
111 |
+
# Dynamically create the specified number of columns
|
112 |
+
columns = st.columns(len(emotion_scores))
|
113 |
+
|
114 |
+
# emotion_scores_mean = [sum(sublist) / len(sublist) for sublist in scores]
|
115 |
+
emotion_scores_mean = {emotion:sum(sublist) / len(sublist) for emotion, sublist in zip(emotion_labels, scores)}
|
116 |
+
max_emo = max(emotion_scores_mean)
|
117 |
+
emotion_scores_sorted = dict(sorted(emotion_scores_mean.items(), key=lambda x: x[1], reverse=True))
|
118 |
+
colors_sorted = [colors[list(emotion_scores_mean.keys()).index(key)] for key in list(emotion_scores_sorted.keys())]
|
119 |
+
|
120 |
+
# Add content to each column
|
121 |
+
for i, (col, emotion) in enumerate(zip(columns, emotion_scores_sorted)):
|
122 |
+
color = colors_sorted[i % len(colors_sorted)] # Cycle through colors if more columns than colors
|
123 |
+
col.markdown(f"""
|
124 |
+
<div class="colored-box" style="background-color: {color};">
|
125 |
+
{emotion} : {100*emotion_scores_sorted[emotion]:.2f} %
|
126 |
+
</div>
|
127 |
+
"""
|
128 |
+
, unsafe_allow_html=True)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
st.success("Analyse terminée !")
|
133 |
+
else:
|
134 |
+
st.warning("You need to load an audio file !")
|
135 |
+
|
136 |
+
st.subheader("Feedback")
|
137 |
+
|
138 |
+
# Initialisation du fichier CSV
|
139 |
+
csv_file = os.path.join("src","predictions","feedback.csv")
|
140 |
+
|
141 |
+
# Vérifier si le fichier CSV existe, sinon le créer avec des colonnes appropriées
|
142 |
+
if not os.path.exists(csv_file):
|
143 |
+
df = pd.DataFrame(columns=["filepath", "prediction", "feedback"])
|
144 |
+
df.to_csv(csv_file, index=False)
|
145 |
+
|
146 |
+
# Charger les données existantes du CSV
|
147 |
+
df = pd.read_csv(csv_file)
|
148 |
+
|
149 |
+
with st.form("feedback_form"):
|
150 |
+
st.write("What should have been the correct prediction ? (*Choose the same emotion if the prediction was correct*).")
|
151 |
+
feedback = st.selectbox("Your answer :", ['Sadness','Anger', 'Disgust', 'Fear', 'Surprise', 'Joy', 'Neutral'])
|
152 |
+
submit_button = st.form_submit_button("Submit")
|
153 |
+
st.write("En cliquant sur ce bouton, vous acceptez que votre audio soit sauvegardé dans notre base de données.")
|
154 |
+
|
155 |
+
if submit_button:
|
156 |
+
# Ajouter le feedback au DataFrame
|
157 |
+
new_entry = {"filepath": audio_file.name, "prediction": max_emo, "feedback": feedback}
|
158 |
+
df = df.append(new_entry, ignore_index=True)
|
159 |
+
|
160 |
+
# Sauvegarder les données mises à jour dans le fichier CSV
|
161 |
+
df.to_csv(csv_file, index=False)
|
162 |
+
|
163 |
+
# Sauvegarder le fichier audio
|
164 |
+
with open(os.path.join("src","predictions","data"), "wb") as f:
|
165 |
+
f.write(audio_file.getbuffer())
|
166 |
+
|
167 |
+
# Confirmation pour l'utilisateur
|
168 |
+
st.success("Merci pour votre retour ! Vos données ont été sauvegardées.")
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
with tab2:
|
173 |
st.header("🔈 Realtime Audio Record")
|
174 |
st.write("Here you can record an audio.")
|
|
|
190 |
############################# A décommenté quand ce sera débogué
|
191 |
if st.button("Transcribe", key="transcribe-button"):
|
192 |
# # Fonction pour transcrire l'audio
|
193 |
+
# transcription = transcribe_audio(st.audio)
|
194 |
|
195 |
# # Charger et transcrire l'audio
|
196 |
# # audio, rate = load_audio(audio_file_path) # (re)chargement de l'audio si nécessaire
|
197 |
+
# transcription = transcribe_audio(audio_file, sampling_rate=16000)
|
198 |
|
199 |
# # Afficher la transcription
|
200 |
+
# st.write("Transcription :", transcription)
|
201 |
|
202 |
+
st.success("Audio registered successfully.")
|
|
|
203 |
# if save:
|
204 |
# file_path = "transcript.txt"
|
205 |
|
views/real_time.py
CHANGED
@@ -86,64 +86,51 @@ if start_button:
|
|
86 |
### Real time prediction for uploaded audio file
|
87 |
###############################
|
88 |
# Charger le modèle wav2vec et le processeur
|
89 |
-
model = Wav2Vec2ForSequenceClassification.from_pretrained("your_emotion_model_path")
|
90 |
-
processor = Wav2Vec2Processor.from_pretrained("your_emotion_model_path")
|
91 |
|
92 |
-
#
|
93 |
-
|
|
|
94 |
|
95 |
-
#
|
96 |
-
#
|
97 |
-
#
|
98 |
-
# with torch.no_grad():
|
99 |
-
# logits = model(**inputs).logits
|
100 |
-
# scores = torch.softmax(logits, dim=1).squeeze().tolist()
|
101 |
-
# return dict(zip(emotions, scores))
|
102 |
-
|
103 |
-
# Configuration Streamlit
|
104 |
-
st.title("Analyse des émotions en temps réel")
|
105 |
-
uploaded_file = st.file_uploader("Choisissez un fichier audio", type=["wav", "mp3"])
|
106 |
-
|
107 |
-
if uploaded_file is not None:
|
108 |
-
# Charger et rééchantillonner l'audio
|
109 |
-
audio, sr = librosa.load(uploaded_file, sr=16000)
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
|
124 |
-
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
|
132 |
-
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
|
146 |
-
|
147 |
|
148 |
|
149 |
|
|
|
86 |
### Real time prediction for uploaded audio file
|
87 |
###############################
|
88 |
# Charger le modèle wav2vec et le processeur
|
|
|
|
|
89 |
|
90 |
+
# # Configuration Streamlit
|
91 |
+
# st.title("Analyse des émotions en temps réel")
|
92 |
+
# uploaded_file = st.file_uploader("Choisissez un fichier audio", type=["wav", "mp3"])
|
93 |
|
94 |
+
# if uploaded_file is not None:
|
95 |
+
# # Charger et rééchantillonner l'audio
|
96 |
+
# audio, sr = librosa.load(uploaded_file, sr=16000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# # Paramètres de la fenêtre glissante
|
99 |
+
# window_size = 1 # en secondes
|
100 |
+
# hop_length = 0.5 # en secondes
|
101 |
|
102 |
+
# # Créer un graphique en temps réel
|
103 |
+
# fig, ax = plt.subplots()
|
104 |
+
# lines = [ax.plot([], [], label=emotion)[0] for emotion in emotions]
|
105 |
+
# ax.set_ylim(0, 1)
|
106 |
+
# ax.set_xlim(0, len(audio) / sr)
|
107 |
+
# ax.set_xlabel("Temps (s)")
|
108 |
+
# ax.set_ylabel("Probabilité")
|
109 |
+
# ax.legend()
|
110 |
|
111 |
+
# chart = st.pyplot(fig)
|
112 |
|
113 |
+
# # Traitement par fenêtre glissante
|
114 |
+
# for i in range(0, len(audio), int(hop_length * sr)):
|
115 |
+
# chunk = audio[i:i + int(window_size * sr)]
|
116 |
+
# if len(chunk) < int(window_size * sr):
|
117 |
+
# break
|
118 |
|
119 |
+
# emotion_scores = predict_emotion(chunk, output_probs=False, sampling_rate=RATE)
|
120 |
|
121 |
+
# # Mettre à jour le graphique
|
122 |
+
# for emotion, line in zip(emotions, lines):
|
123 |
+
# xdata = line.get_xdata().tolist()
|
124 |
+
# ydata = line.get_ydata().tolist()
|
125 |
+
# xdata.append(i / sr)
|
126 |
+
# ydata.append(emotion_scores[emotion])
|
127 |
+
# line.set_data(xdata, ydata)
|
128 |
|
129 |
+
# ax.relim()
|
130 |
+
# ax.autoscale_view()
|
131 |
+
# chart.pyplot(fig)
|
132 |
|
133 |
+
# st.success("Analyse terminée !")
|
134 |
|
135 |
|
136 |
|