Spaces:
Sleeping
Sleeping
Marina Kpamegan
commited on
Commit
·
06c46fb
1
Parent(s):
129ee9b
Reorganisation
Browse files- .gitignore +2 -0
- src/config.py +20 -0
- src/model/__init__.py +1 -0
- src/model/emotion_classifier.py +12 -14
- src/model/emotion_dataset.py +0 -29
- src/model/feature_extrator.py +6 -0
- src/model/test_wav2vec.py +0 -62
- src/model/train.py +0 -51
- src/model/utils.py +0 -8
- src/speech2.py +0 -201
- src/train.py +93 -0
- src/utils/__init__.py +1 -0
- src/utils/dataset.py +13 -0
- src/utils/preprocessing.py +33 -0
.gitignore
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
4 |
*$py.class
|
|
|
5 |
|
6 |
# C extensions
|
7 |
*.so
|
@@ -182,3 +183,4 @@ data/*
|
|
182 |
|
183 |
# Mac
|
184 |
.DS_Store
|
|
|
|
2 |
__pycache__/
|
3 |
*.py[cod]
|
4 |
*$py.class
|
5 |
+
.idea/
|
6 |
|
7 |
# C extensions
|
8 |
*.so
|
|
|
183 |
|
184 |
# Mac
|
185 |
.DS_Store
|
186 |
+
*.pth
|
src/config.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
|
5 |
+
# Charger les variables d'environnement
|
6 |
+
load_dotenv()
|
7 |
+
HF_API_KEY = os.getenv("HF_API_KEY")
|
8 |
+
|
9 |
+
if not HF_API_KEY:
|
10 |
+
raise ValueError("Le token Hugging Face n'a pas été trouvé dans .env")
|
11 |
+
|
12 |
+
# Labels d'émotions
|
13 |
+
LABELS = {"colere": 0, "neutre": 1, "joie": 2}
|
14 |
+
NUM_LABELS = len(LABELS)
|
15 |
+
|
16 |
+
# Choisir le device
|
17 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
# Modèle Wav2Vec2
|
20 |
+
MODEL_NAME = "facebook/wav2vec2-large-xlsr-53-french"
|
src/model/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/model/emotion_classifier.py
CHANGED
@@ -1,17 +1,15 @@
|
|
1 |
-
import torch
|
2 |
import torch.nn as nn
|
3 |
-
from transformers import Wav2Vec2Model
|
4 |
|
5 |
-
class
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
self.
|
12 |
-
|
13 |
-
def forward(self, input_values):
|
14 |
-
outputs = self.wav2vec2(input_values).last_hidden_state
|
15 |
-
pooled_output = torch.mean(outputs, dim=1)
|
16 |
-
logits = self.fc(pooled_output)
|
17 |
-
return self.softmax(logits)
|
|
|
|
|
1 |
import torch.nn as nn
|
|
|
2 |
|
3 |
+
class EmotionClassifier(nn.Module):
|
4 |
+
def __init__(self, feature_dim, num_labels):
|
5 |
+
super(EmotionClassifier, self).__init__()
|
6 |
+
self.fc1 = nn.Linear(feature_dim, 256)
|
7 |
+
self.relu = nn.ReLU()
|
8 |
+
self.dropout = nn.Dropout(0.3)
|
9 |
+
self.fc2 = nn.Linear(256, num_labels)
|
10 |
|
11 |
+
def forward(self, x):
|
12 |
+
x = self.fc1(x)
|
13 |
+
x = self.relu(x)
|
14 |
+
x = self.dropout(x)
|
15 |
+
return self.fc2(x)
|
|
|
|
|
|
|
|
|
|
|
|
src/model/emotion_dataset.py
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
import librosa
|
2 |
-
import torch
|
3 |
-
import pandas as pd
|
4 |
-
from torch.utils.data import Dataset
|
5 |
-
import os
|
6 |
-
|
7 |
-
class EmotionDataset(Dataset):
|
8 |
-
def __init__(self, csv_file, processor):
|
9 |
-
self.data = pd.read_csv(csv_file, sep=",", header=0)
|
10 |
-
# print(self.data.info()) # Pour voir les premières lignes du dataset
|
11 |
-
self.processor = processor
|
12 |
-
self.emotion_labels = {"joie": 0, "colere": 1, "neutre": 2}
|
13 |
-
# print(self.data["emotion"].unique()) # Pour voir les valeurs exactes
|
14 |
-
|
15 |
-
|
16 |
-
def __len__(self):
|
17 |
-
return len(self.data)
|
18 |
-
|
19 |
-
def __getitem__(self, idx):
|
20 |
-
base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data"))
|
21 |
-
audio_file = self.data.iloc[idx, 0]
|
22 |
-
label = self.emotion_labels[self.data.iloc[idx, 1].strip()]
|
23 |
-
|
24 |
-
audio_path = os.path.join(base_path, audio_file)
|
25 |
-
waveform, _ = librosa.load(audio_path, sr=16000) # Chargement audio
|
26 |
-
input_values = self.processor(waveform, return_tensors="pt", sampling_rate=16000).input_values
|
27 |
-
|
28 |
-
return input_values.squeeze(0), torch.tensor(label, dtype=torch.long)
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/model/feature_extrator.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import Wav2Vec2Model, Wav2Vec2Processor
|
3 |
+
from config import MODEL_NAME, DEVICE
|
4 |
+
|
5 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
|
6 |
+
feature_extractor = Wav2Vec2Model.from_pretrained(MODEL_NAME).to(DEVICE)
|
src/model/test_wav2vec.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
2 |
-
import torch
|
3 |
-
import librosa
|
4 |
-
import numpy as np
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
|
7 |
-
# Charger le modèle et le processeur Wav2Vec 2.0
|
8 |
-
model_name = "facebook/wav2vec2-large-xlsr-53-french"
|
9 |
-
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
10 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
11 |
-
|
12 |
-
# Charger l'audio
|
13 |
-
audio_file = "C:\\Users\\fkpamegan\\Downloads\\datasets_oreau2_m_sessp_07a01Pa.wav"
|
14 |
-
y, sr = librosa.load(audio_file, sr=16000)
|
15 |
-
|
16 |
-
# Prétraiter l'audio avec le processeur Wav2Vec 2.0
|
17 |
-
input_values = processor(y, return_tensors="pt").input_values
|
18 |
-
|
19 |
-
# Obtenir la prédiction (logits)
|
20 |
-
with torch.no_grad():
|
21 |
-
logits = model(input_values).logitsa
|
22 |
-
|
23 |
-
# Obtenir les IDs des tokens prédits (transcription)
|
24 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
25 |
-
|
26 |
-
# Décoder les IDs pour obtenir le texte transcrit
|
27 |
-
transcription = processor.decode(predicted_ids[0])
|
28 |
-
|
29 |
-
print("Transcription:", transcription)
|
30 |
-
|
31 |
-
|
32 |
-
# Extraire le pitch (hauteur tonale) et l'intensité
|
33 |
-
pitch, magnitudes = librosa.core.piptrack(y=y, sr=sr)
|
34 |
-
intensity = librosa.feature.rms(y=y) # Intensité (volume)
|
35 |
-
|
36 |
-
# Calculer le tempo (vitesse de parole)
|
37 |
-
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
38 |
-
|
39 |
-
# Affichage du pitch
|
40 |
-
plt.figure(figsize=(10, 6))
|
41 |
-
librosa.display.specshow(pitch, x_axis='time', y_axis='log')
|
42 |
-
plt.colorbar()
|
43 |
-
plt.title("Pitch (Hauteur Tonale)")
|
44 |
-
plt.show()
|
45 |
-
|
46 |
-
# Affichage de l'intensité
|
47 |
-
plt.figure(figsize=(10, 6))
|
48 |
-
librosa.display.specshow(intensity, x_axis='time')
|
49 |
-
plt.colorbar()
|
50 |
-
plt.title("Intensité")
|
51 |
-
plt.show()
|
52 |
-
|
53 |
-
# Fusionner la transcription avec les caractéristiques prosodiques (pitch, intensité, tempo)
|
54 |
-
features = np.hstack([
|
55 |
-
np.mean(intensity, axis=1), # Moyenne de l'intensité
|
56 |
-
np.mean(pitch, axis=1), # Moyenne du pitch
|
57 |
-
tempo # Tempo
|
58 |
-
])
|
59 |
-
|
60 |
-
# Afficher les caractéristiques extraites
|
61 |
-
print("Caractéristiques combinées :")
|
62 |
-
print(features)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/model/train.py
DELETED
@@ -1,51 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.optim as optim
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.utils.data import DataLoader
|
5 |
-
from transformers import Wav2Vec2Processor
|
6 |
-
from emotion_dataset import EmotionDataset
|
7 |
-
from emotion_classifier import Wav2Vec2EmotionClassifier
|
8 |
-
import os
|
9 |
-
from utils import collate_fn
|
10 |
-
|
11 |
-
|
12 |
-
# Charger le processeur et le dataset
|
13 |
-
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53-french")
|
14 |
-
data_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "dataset.csv"))
|
15 |
-
if not os.path.exists(data_path):
|
16 |
-
raise FileNotFoundError(f"Le fichier {data_path} est introuvable.")
|
17 |
-
|
18 |
-
dataset = EmotionDataset(data_path, processor)
|
19 |
-
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=collate_fn) # collate_fn ajouté
|
20 |
-
|
21 |
-
|
22 |
-
# Initialiser le modèle
|
23 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
-
model = Wav2Vec2EmotionClassifier().to(device)
|
25 |
-
|
26 |
-
# Définir la fonction de perte et l'optimiseur
|
27 |
-
criterion = nn.CrossEntropyLoss()
|
28 |
-
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
|
29 |
-
|
30 |
-
# Entraînement du modèle
|
31 |
-
num_epochs = 10
|
32 |
-
for epoch in range(num_epochs):
|
33 |
-
model.train()
|
34 |
-
total_loss = 0
|
35 |
-
|
36 |
-
for inputs, labels in dataloader:
|
37 |
-
inputs, labels = inputs.to(device), labels.to(device)
|
38 |
-
|
39 |
-
optimizer.zero_grad()
|
40 |
-
outputs = model(inputs)
|
41 |
-
loss = criterion(outputs, labels)
|
42 |
-
loss.backward()
|
43 |
-
optimizer.step()
|
44 |
-
|
45 |
-
total_loss += loss.item()
|
46 |
-
|
47 |
-
print(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
|
48 |
-
|
49 |
-
# Sauvegarde du modèle
|
50 |
-
torch.save(model.state_dict(), "wav2vec2_emotion.pth")
|
51 |
-
print("Modèle sauvegardé !")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/model/utils.py
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch.nn.utils.rnn import pad_sequence
|
3 |
-
|
4 |
-
def collate_fn(batch):
|
5 |
-
inputs, labels = zip(*batch) # Séparer les features et les labels
|
6 |
-
inputs = pad_sequence(inputs, batch_first=True, padding_value=0) # Padding des audios
|
7 |
-
labels = torch.tensor(labels, dtype=torch.long) # Conversion en tensor
|
8 |
-
return inputs, labels
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/speech2.py
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.optim as optim
|
5 |
-
import soundfile as sf
|
6 |
-
import torchaudio
|
7 |
-
import numpy as np
|
8 |
-
from datasets import Dataset
|
9 |
-
from transformers import (
|
10 |
-
Wav2Vec2Model,
|
11 |
-
Wav2Vec2Processor
|
12 |
-
)
|
13 |
-
from dotenv import load_dotenv
|
14 |
-
from sklearn.metrics import accuracy_score
|
15 |
-
|
16 |
-
# Charger .env pour Hugging Face API Key
|
17 |
-
load_dotenv()
|
18 |
-
HF_API_KEY = os.getenv("HF_API_KEY")
|
19 |
-
|
20 |
-
if not HF_API_KEY:
|
21 |
-
raise ValueError("Le token Hugging Face n'a pas été trouvé dans .env")
|
22 |
-
|
23 |
-
# Définition des labels pour la classification des émotions
|
24 |
-
LABELS = {"colere": 0, "neutre": 1, "joie": 2}
|
25 |
-
NUM_LABELS = len(LABELS)
|
26 |
-
|
27 |
-
# Charger le processeur et le modèle pour l'extraction de features
|
28 |
-
model_name = "facebook/wav2vec2-large-xlsr-53-french"
|
29 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
30 |
-
|
31 |
-
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
32 |
-
feature_extractor = Wav2Vec2Model.from_pretrained(model_name).to(device)
|
33 |
-
|
34 |
-
# Resampleur pour convertir en 16 kHz
|
35 |
-
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
36 |
-
|
37 |
-
# Définition du classifieur amélioré
|
38 |
-
class EmotionClassifier(nn.Module):
|
39 |
-
def __init__(self, feature_dim, num_labels):
|
40 |
-
super(EmotionClassifier, self).__init__()
|
41 |
-
self.fc1 = nn.Linear(feature_dim, 256)
|
42 |
-
self.relu = nn.ReLU()
|
43 |
-
self.dropout = nn.Dropout(0.3)
|
44 |
-
self.fc2 = nn.Linear(256, num_labels)
|
45 |
-
|
46 |
-
def forward(self, x):
|
47 |
-
x = self.fc1(x)
|
48 |
-
x = self.relu(x)
|
49 |
-
x = self.dropout(x)
|
50 |
-
return self.fc2(x)
|
51 |
-
|
52 |
-
# Instancier le classifieur
|
53 |
-
classifier = EmotionClassifier(feature_extractor.config.hidden_size, NUM_LABELS).to(device)
|
54 |
-
|
55 |
-
# Charger les fichiers audio et leurs labels
|
56 |
-
def load_audio_data(data_dir):
|
57 |
-
data = []
|
58 |
-
for label_name, label_id in LABELS.items():
|
59 |
-
label_dir = os.path.join(data_dir, label_name)
|
60 |
-
for file in os.listdir(label_dir):
|
61 |
-
if file.endswith(".wav"):
|
62 |
-
file_path = os.path.join(label_dir, file)
|
63 |
-
data.append({"path": file_path, "label": label_id})
|
64 |
-
return Dataset.from_list(data)
|
65 |
-
|
66 |
-
# Chargement du dataset
|
67 |
-
data_dir = "./dataset"
|
68 |
-
ds = load_audio_data(data_dir)
|
69 |
-
|
70 |
-
# Charger les fichiers audio avec SoundFile et rééchantillonner à 16 kHz
|
71 |
-
def preprocess_audio(batch):
|
72 |
-
speech, sample_rate = sf.read(batch["path"], dtype="float32")
|
73 |
-
|
74 |
-
if sample_rate != 16000:
|
75 |
-
speech = torch.tensor(speech).unsqueeze(0)
|
76 |
-
speech = resampler(speech).squeeze(0).numpy()
|
77 |
-
|
78 |
-
batch["speech"] = speech.tolist() # Convertir en liste pour éviter les erreurs de PyArrow
|
79 |
-
batch["sampling_rate"] = 16000
|
80 |
-
return batch
|
81 |
-
|
82 |
-
ds = ds.map(preprocess_audio)
|
83 |
-
|
84 |
-
# Vérifier la distribution des longueurs des fichiers audio
|
85 |
-
lengths = [len(sample["speech"]) for sample in ds]
|
86 |
-
max_length = int(np.percentile(lengths, 95))
|
87 |
-
|
88 |
-
# Transformer l'audio en features utilisables par le modèle
|
89 |
-
def prepare_features(batch):
|
90 |
-
features = processor(
|
91 |
-
batch["speech"],
|
92 |
-
sampling_rate=16000,
|
93 |
-
padding=True,
|
94 |
-
truncation=True,
|
95 |
-
max_length=max_length,
|
96 |
-
return_tensors="pt"
|
97 |
-
)
|
98 |
-
batch["input_values"] = features.input_values.squeeze(0)
|
99 |
-
batch["label"] = torch.tensor(batch["label"], dtype=torch.long)
|
100 |
-
return batch
|
101 |
-
|
102 |
-
ds = ds.map(prepare_features)
|
103 |
-
|
104 |
-
# Diviser les données en train et test
|
105 |
-
ds = ds.train_test_split(test_size=0.2)
|
106 |
-
train_ds = ds["train"]
|
107 |
-
test_ds = ds["test"]
|
108 |
-
|
109 |
-
# Fonction d'évaluation sur les données de test
|
110 |
-
def evaluate(classifier, feature_extractor, test_ds):
|
111 |
-
classifier.eval()
|
112 |
-
correct = 0
|
113 |
-
total = 0
|
114 |
-
|
115 |
-
with torch.no_grad():
|
116 |
-
for batch in test_ds:
|
117 |
-
input_values = processor(
|
118 |
-
batch["speech"],
|
119 |
-
sampling_rate=16000,
|
120 |
-
return_tensors="pt",
|
121 |
-
padding=True,
|
122 |
-
truncation=True,
|
123 |
-
max_length=max_length
|
124 |
-
).input_values.to(device)
|
125 |
-
|
126 |
-
features = feature_extractor(input_values).last_hidden_state.mean(dim=1)
|
127 |
-
logits = classifier(features)
|
128 |
-
predictions = logits.argmax(dim=-1)
|
129 |
-
labels = torch.tensor(batch["label"], dtype=torch.long, device=device)
|
130 |
-
|
131 |
-
correct += (predictions == labels).sum().item()
|
132 |
-
total += 1
|
133 |
-
|
134 |
-
return correct / total
|
135 |
-
|
136 |
-
# Fonction d'entraînement
|
137 |
-
def train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=10, batch_size=16):
|
138 |
-
optimizer = optim.Adam(classifier.parameters(), lr=1e-4)
|
139 |
-
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.7)
|
140 |
-
loss_fn = nn.CrossEntropyLoss()
|
141 |
-
|
142 |
-
best_accuracy = 0.0 # Variable pour stocker la meilleure accuracy
|
143 |
-
|
144 |
-
for epoch in range(epochs):
|
145 |
-
classifier.train()
|
146 |
-
total_loss, correct = 0, 0
|
147 |
-
batch_count = 0
|
148 |
-
|
149 |
-
for i in range(0, len(train_ds), batch_size):
|
150 |
-
batch = train_ds[i: i + batch_size]
|
151 |
-
optimizer.zero_grad()
|
152 |
-
|
153 |
-
input_values = processor(
|
154 |
-
batch["speech"],
|
155 |
-
sampling_rate=16000,
|
156 |
-
return_tensors="pt",
|
157 |
-
padding=True,
|
158 |
-
truncation=True,
|
159 |
-
max_length=max_length
|
160 |
-
).input_values.to(device)
|
161 |
-
|
162 |
-
with torch.no_grad():
|
163 |
-
features = feature_extractor(input_values).last_hidden_state.mean(dim=1)
|
164 |
-
features = (features - features.mean()) / features.std() # Normalisation
|
165 |
-
|
166 |
-
logits = classifier(features)
|
167 |
-
labels = torch.tensor(batch["label"], dtype=torch.long, device=device)
|
168 |
-
|
169 |
-
if labels.numel() == 0:
|
170 |
-
continue
|
171 |
-
|
172 |
-
loss = loss_fn(logits, labels)
|
173 |
-
loss.backward()
|
174 |
-
optimizer.step()
|
175 |
-
|
176 |
-
total_loss += loss.item()
|
177 |
-
correct += (logits.argmax(dim=-1) == labels).sum().item()
|
178 |
-
batch_count += 1
|
179 |
-
|
180 |
-
train_acc = correct / len(train_ds)
|
181 |
-
test_acc = evaluate(classifier, feature_extractor, test_ds)
|
182 |
-
scheduler.step()
|
183 |
-
|
184 |
-
# Sauvegarde uniquement si l'accuracy sur test est la meilleure obtenue
|
185 |
-
if test_acc > best_accuracy:
|
186 |
-
best_accuracy = test_acc
|
187 |
-
torch.save({
|
188 |
-
"classifier_state_dict": classifier.state_dict(),
|
189 |
-
"feature_extractor_state_dict": feature_extractor.state_dict(),
|
190 |
-
"processor": processor
|
191 |
-
}, "best_emotion_model.pth")
|
192 |
-
print(f"✅ Nouveau meilleur modèle sauvegardé ! Accuracy Test: {best_accuracy:.4f}")
|
193 |
-
|
194 |
-
print(f"Epoch {epoch+1}/{epochs} - Loss: {total_loss/batch_count:.4f} - Train Accuracy: {train_acc:.4f} - Test Accuracy: {test_acc:.4f}")
|
195 |
-
|
196 |
-
return classifier
|
197 |
-
|
198 |
-
# Entraînement
|
199 |
-
trained_classifier = train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=10, batch_size=16)
|
200 |
-
|
201 |
-
print("✅ Entraînement terminé, le meilleur modèle a été sauvegardé !")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/train.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.optim as optim
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from sklearn.metrics import accuracy_score
|
6 |
+
from utils.dataset import load_audio_data
|
7 |
+
from utils.preprocessing import preprocess_audio, prepare_features
|
8 |
+
from model.emotion_classifier import EmotionClassifier
|
9 |
+
from model.feature_extrator import feature_extractor, processor
|
10 |
+
from config import DEVICE, NUM_LABELS
|
11 |
+
import os
|
12 |
+
|
13 |
+
# Charger les données
|
14 |
+
data_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "data"))
|
15 |
+
print(f"data dir {data_dir}")
|
16 |
+
ds = load_audio_data(data_dir)
|
17 |
+
|
18 |
+
# Prétraitement
|
19 |
+
ds = ds.map(preprocess_audio)
|
20 |
+
|
21 |
+
# Ajustement de la longueur maximale
|
22 |
+
lengths = [len(sample["speech"]) for sample in ds]
|
23 |
+
max_length = int(np.percentile(lengths, 95))
|
24 |
+
|
25 |
+
ds = ds.map(lambda batch: prepare_features(batch, max_length))
|
26 |
+
|
27 |
+
# Séparation en train et test
|
28 |
+
ds = ds.train_test_split(test_size=0.2)
|
29 |
+
train_ds, test_ds = ds["train"], ds["test"]
|
30 |
+
|
31 |
+
# Instancier le modèle
|
32 |
+
classifier = EmotionClassifier(feature_extractor.config.hidden_size, NUM_LABELS).to(DEVICE)
|
33 |
+
|
34 |
+
# Fonction d'entraînement
|
35 |
+
def train_classifier(classifier, train_ds, test_ds, epochs=20, batch_size=8):
|
36 |
+
optimizer = optim.AdamW(classifier.parameters(), lr=2e-5, weight_decay=0.01)
|
37 |
+
loss_fn = nn.CrossEntropyLoss()
|
38 |
+
best_accuracy = 0.0
|
39 |
+
|
40 |
+
for epoch in range(epochs):
|
41 |
+
classifier.train()
|
42 |
+
total_loss, correct = 0, 0
|
43 |
+
batch_count = 0
|
44 |
+
|
45 |
+
for i in range(0, len(train_ds), batch_size):
|
46 |
+
batch = train_ds[i: i + batch_size]
|
47 |
+
optimizer.zero_grad()
|
48 |
+
|
49 |
+
input_values = processor(
|
50 |
+
batch["speech"],
|
51 |
+
sampling_rate=16000,
|
52 |
+
return_tensors="pt",
|
53 |
+
padding=True,
|
54 |
+
truncation=True,
|
55 |
+
max_length=max_length
|
56 |
+
).input_values.to(DEVICE)
|
57 |
+
|
58 |
+
with torch.no_grad():
|
59 |
+
features = feature_extractor(input_values).last_hidden_state.mean(dim=1)
|
60 |
+
|
61 |
+
logits = classifier(features)
|
62 |
+
labels = torch.tensor(batch["label"], dtype=torch.long, device=DEVICE)
|
63 |
+
|
64 |
+
if labels.numel() == 0:
|
65 |
+
continue
|
66 |
+
|
67 |
+
loss = loss_fn(logits, labels)
|
68 |
+
loss.backward()
|
69 |
+
optimizer.step()
|
70 |
+
|
71 |
+
total_loss += loss.item()
|
72 |
+
correct += (logits.argmax(dim=-1) == labels).sum().item()
|
73 |
+
batch_count += 1
|
74 |
+
|
75 |
+
train_acc = correct / len(train_ds)
|
76 |
+
|
77 |
+
if train_acc > best_accuracy:
|
78 |
+
best_accuracy = train_acc
|
79 |
+
torch.save({
|
80 |
+
"classifier_state_dict": classifier.state_dict(),
|
81 |
+
"feature_extractor_state_dict": feature_extractor.state_dict(),
|
82 |
+
"processor": processor
|
83 |
+
}, "acc_model.pth")
|
84 |
+
print(f"Nouveau meilleur modèle sauvegardé ! Accuracy: {best_accuracy:.4f}")
|
85 |
+
|
86 |
+
print(f"Epoch {epoch+1}/{epochs} - Loss: {total_loss/batch_count:.4f} - Accuracy: {train_acc:.4f}")
|
87 |
+
|
88 |
+
return classifier
|
89 |
+
|
90 |
+
# Lancer l'entraînement
|
91 |
+
trained_classifier = train_classifier(classifier, train_ds, test_ds, epochs=20, batch_size=8)
|
92 |
+
|
93 |
+
print("✅ Entraînement terminé, le meilleur modèle a été sauvegardé !")
|
src/utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/utils/dataset.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datasets import Dataset
|
3 |
+
from config import LABELS
|
4 |
+
|
5 |
+
def load_audio_data(data_dir):
|
6 |
+
data = []
|
7 |
+
for label_name, label_id in LABELS.items():
|
8 |
+
label_dir = os.path.join(data_dir, label_name)
|
9 |
+
for file in os.listdir(label_dir):
|
10 |
+
if file.endswith(".wav"):
|
11 |
+
file_path = os.path.join(label_dir, file)
|
12 |
+
data.append({"path": file_path, "label": label_id})
|
13 |
+
return Dataset.from_list(data)
|
src/utils/preprocessing.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import soundfile as sf
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from model.feature_extrator import processor
|
6 |
+
from config import DEVICE
|
7 |
+
|
8 |
+
# Resampler
|
9 |
+
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
|
10 |
+
|
11 |
+
def preprocess_audio(batch):
|
12 |
+
speech, sample_rate = sf.read(batch["path"], dtype="float32")
|
13 |
+
|
14 |
+
if sample_rate != 16000:
|
15 |
+
speech = torch.tensor(speech).unsqueeze(0)
|
16 |
+
speech = resampler(speech).squeeze(0).numpy()
|
17 |
+
|
18 |
+
batch["speech"] = speech.tolist()
|
19 |
+
batch["sampling_rate"] = 16000
|
20 |
+
return batch
|
21 |
+
|
22 |
+
def prepare_features(batch, max_length):
|
23 |
+
features = processor(
|
24 |
+
batch["speech"],
|
25 |
+
sampling_rate=16000,
|
26 |
+
padding=True,
|
27 |
+
truncation=True,
|
28 |
+
max_length=max_length,
|
29 |
+
return_tensors="pt"
|
30 |
+
)
|
31 |
+
batch["input_values"] = features.input_values.squeeze(0)
|
32 |
+
batch["label"] = torch.tensor(batch["label"], dtype=torch.long)
|
33 |
+
return batch
|