minancy's picture
train with a new file speech2
959c3f4
raw
history blame
6.87 kB
import os
import torch
import torch.nn as nn
import torch.optim as optim
import soundfile as sf
import torchaudio
import numpy as np
from datasets import Dataset
from transformers import (
Wav2Vec2Model,
Wav2Vec2Processor
)
from dotenv import load_dotenv
from sklearn.metrics import accuracy_score
# Charger .env pour Hugging Face API Key
load_dotenv()
HF_API_KEY = os.getenv("HF_API_KEY")
if not HF_API_KEY:
raise ValueError("Le token Hugging Face n'a pas été trouvé dans .env")
# Définition des labels pour la classification des émotions
LABELS = {"colere": 0, "neutre": 1, "joie": 2}
NUM_LABELS = len(LABELS)
# Charger le processeur et le modèle pour l'extraction de features
model_name = "facebook/wav2vec2-large-xlsr-53-french"
device = "cuda" if torch.cuda.is_available() else "cpu"
processor = Wav2Vec2Processor.from_pretrained(model_name)
feature_extractor = Wav2Vec2Model.from_pretrained(model_name).to(device)
# Resampleur pour convertir en 16 kHz
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
# Définition du classifieur amélioré
class EmotionClassifier(nn.Module):
def __init__(self, feature_dim, num_labels):
super(EmotionClassifier, self).__init__()
self.fc1 = nn.Linear(feature_dim, 256)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.3)
self.fc2 = nn.Linear(256, num_labels)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.dropout(x)
return self.fc2(x)
# Instancier le classifieur
classifier = EmotionClassifier(feature_extractor.config.hidden_size, NUM_LABELS).to(device)
# Charger les fichiers audio et leurs labels
def load_audio_data(data_dir):
data = []
for label_name, label_id in LABELS.items():
label_dir = os.path.join(data_dir, label_name)
for file in os.listdir(label_dir):
if file.endswith(".wav"):
file_path = os.path.join(label_dir, file)
data.append({"path": file_path, "label": label_id})
return Dataset.from_list(data)
# Chargement du dataset
data_dir = "./dataset"
ds = load_audio_data(data_dir)
# Charger les fichiers audio avec SoundFile et rééchantillonner à 16 kHz
def preprocess_audio(batch):
speech, sample_rate = sf.read(batch["path"], dtype="float32")
if sample_rate != 16000:
speech = torch.tensor(speech).unsqueeze(0)
speech = resampler(speech).squeeze(0).numpy()
batch["speech"] = speech.tolist() # Convertir en liste pour éviter les erreurs de PyArrow
batch["sampling_rate"] = 16000
return batch
ds = ds.map(preprocess_audio)
# Vérifier la distribution des longueurs des fichiers audio
lengths = [len(sample["speech"]) for sample in ds]
max_length = int(np.percentile(lengths, 95))
# Transformer l'audio en features utilisables par le modèle
def prepare_features(batch):
features = processor(
batch["speech"],
sampling_rate=16000,
padding=True,
truncation=True,
max_length=max_length,
return_tensors="pt"
)
batch["input_values"] = features.input_values.squeeze(0)
batch["label"] = torch.tensor(batch["label"], dtype=torch.long)
return batch
ds = ds.map(prepare_features)
# Diviser les données en train et test
ds = ds.train_test_split(test_size=0.2)
train_ds = ds["train"]
test_ds = ds["test"]
# Fonction d'évaluation sur les données de test
def evaluate(classifier, feature_extractor, test_ds):
classifier.eval()
correct = 0
total = 0
with torch.no_grad():
for batch in test_ds:
input_values = processor(
batch["speech"],
sampling_rate=16000,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
).input_values.to(device)
features = feature_extractor(input_values).last_hidden_state.mean(dim=1)
logits = classifier(features)
predictions = logits.argmax(dim=-1)
labels = torch.tensor(batch["label"], dtype=torch.long, device=device)
correct += (predictions == labels).sum().item()
total += 1
return correct / total
# Fonction d'entraînement
def train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=10, batch_size=16):
optimizer = optim.Adam(classifier.parameters(), lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.7)
loss_fn = nn.CrossEntropyLoss()
best_accuracy = 0.0 # Variable pour stocker la meilleure accuracy
for epoch in range(epochs):
classifier.train()
total_loss, correct = 0, 0
batch_count = 0
for i in range(0, len(train_ds), batch_size):
batch = train_ds[i: i + batch_size]
optimizer.zero_grad()
input_values = processor(
batch["speech"],
sampling_rate=16000,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
).input_values.to(device)
with torch.no_grad():
features = feature_extractor(input_values).last_hidden_state.mean(dim=1)
features = (features - features.mean()) / features.std() # Normalisation
logits = classifier(features)
labels = torch.tensor(batch["label"], dtype=torch.long, device=device)
if labels.numel() == 0:
continue
loss = loss_fn(logits, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
correct += (logits.argmax(dim=-1) == labels).sum().item()
batch_count += 1
train_acc = correct / len(train_ds)
test_acc = evaluate(classifier, feature_extractor, test_ds)
scheduler.step()
# Sauvegarde uniquement si l'accuracy sur test est la meilleure obtenue
if test_acc > best_accuracy:
best_accuracy = test_acc
torch.save({
"classifier_state_dict": classifier.state_dict(),
"feature_extractor_state_dict": feature_extractor.state_dict(),
"processor": processor
}, "best_emotion_model.pth")
print(f"✅ Nouveau meilleur modèle sauvegardé ! Accuracy Test: {best_accuracy:.4f}")
print(f"Epoch {epoch+1}/{epochs} - Loss: {total_loss/batch_count:.4f} - Train Accuracy: {train_acc:.4f} - Test Accuracy: {test_acc:.4f}")
return classifier
# Entraînement
trained_classifier = train_classifier(feature_extractor, classifier, train_ds, test_ds, epochs=10, batch_size=16)
print("✅ Entraînement terminé, le meilleur modèle a été sauvegardé !")