Spaces:
Sleeping
Sleeping
| ################################ | |
| ### NOT YET TESTED | |
| ############################### | |
| import streamlit as st | |
| import pyaudio | |
| import wave | |
| import torch | |
| from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor | |
| import numpy as np | |
| import time | |
| # Charger le modèle Wav2Vec2 pour la classification des émotions | |
| model_name = "superb/wav2vec2-base-superb-er" # Exemple de modèle pour la reconnaissance des émotions | |
| processor = Wav2Vec2Processor.from_pretrained(model_name) | |
| model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
| # Paramètres audio | |
| CHUNK = 1024 | |
| FORMAT = pyaudio.paInt16 | |
| CHANNELS = 1 | |
| RATE = 16000 | |
| # Fonction pour prédire l'émotion à partir d'un segment audio | |
| def predict_emotion(audio_data): | |
| inputs = processor(audio_data, sampling_rate=RATE, return_tensors="pt", padding=True) | |
| with torch.no_grad(): | |
| logits = model(**inputs).logits | |
| predicted_id = torch.argmax(logits, dim=-1).item() | |
| emotion = model.config.id2label[predicted_id] | |
| return emotion | |
| # Interface Streamlit | |
| st.title("Détection des émotions en temps réel") | |
| # Boutons pour démarrer et arrêter l'enregistrement | |
| start_button = st.button("Démarrer l'enregistrement") | |
| stop_button = st.button("Arrêter l'enregistrement") | |
| # Zone de visualisation des émotions en temps réel | |
| emotion_placeholder = st.empty() | |
| final_emotion_placeholder = st.empty() | |
| if start_button: | |
| st.write("Enregistrement en cours...") | |
| audio = pyaudio.PyAudio() | |
| stream = audio.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) | |
| frames = [] | |
| real_time_emotions = [] | |
| while not stop_button: | |
| data = stream.read(CHUNK) | |
| frames.append(data) | |
| # Traitement en temps réel (par tranche de 1 seconde) | |
| if len(frames) >= RATE // CHUNK: | |
| audio_segment = np.frombuffer(b''.join(frames[-(RATE // CHUNK):]), dtype=np.int16) | |
| emotion = predict_emotion(audio_segment) | |
| real_time_emotions.append(emotion) | |
| emotion_placeholder.line_chart(real_time_emotions) # Affichage graphique des émotions | |
| # Arrêt de l'enregistrement | |
| stream.stop_stream() | |
| stream.close() | |
| audio.terminate() | |
| # Sauvegarde de l'audio enregistré | |
| wf = wave.open("output.wav", "wb") | |
| wf.setnchannels(CHANNELS) | |
| wf.setsampwidth(audio.get_sample_size(FORMAT)) | |
| wf.setframerate(RATE) | |
| wf.writeframes(b"".join(frames)) | |
| wf.close() | |
| # Prédiction finale sur tout l'audio enregistré | |
| full_audio_data = np.frombuffer(b''.join(frames), dtype=np.int16) | |
| final_emotion = predict_emotion(full_audio_data) | |
| final_emotion_placeholder.write(f"Émotion finale prédite : {final_emotion}") | |