Spaces:
Sleeping
Sleeping
################################ | |
### NOT YET TESTED | |
############################### | |
import streamlit as st | |
import pyaudio | |
import wave | |
import torch | |
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor | |
import numpy as np | |
import time | |
# Charger le modèle Wav2Vec2 pour la classification des émotions | |
model_name = "superb/wav2vec2-base-superb-er" # Exemple de modèle pour la reconnaissance des émotions | |
processor = Wav2Vec2Processor.from_pretrained(model_name) | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
# Paramètres audio | |
CHUNK = 1024 | |
FORMAT = pyaudio.paInt16 | |
CHANNELS = 1 | |
RATE = 16000 | |
# Fonction pour prédire l'émotion à partir d'un segment audio | |
def predict_emotion(audio_data): | |
inputs = processor(audio_data, sampling_rate=RATE, return_tensors="pt", padding=True) | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
predicted_id = torch.argmax(logits, dim=-1).item() | |
emotion = model.config.id2label[predicted_id] | |
return emotion | |
# Interface Streamlit | |
st.title("Détection des émotions en temps réel") | |
# Boutons pour démarrer et arrêter l'enregistrement | |
start_button = st.button("Démarrer l'enregistrement") | |
stop_button = st.button("Arrêter l'enregistrement") | |
# Zone de visualisation des émotions en temps réel | |
emotion_placeholder = st.empty() | |
final_emotion_placeholder = st.empty() | |
if start_button: | |
st.write("Enregistrement en cours...") | |
audio = pyaudio.PyAudio() | |
stream = audio.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK) | |
frames = [] | |
real_time_emotions = [] | |
while not stop_button: | |
data = stream.read(CHUNK) | |
frames.append(data) | |
# Traitement en temps réel (par tranche de 1 seconde) | |
if len(frames) >= RATE // CHUNK: | |
audio_segment = np.frombuffer(b''.join(frames[-(RATE // CHUNK):]), dtype=np.int16) | |
emotion = predict_emotion(audio_segment) | |
real_time_emotions.append(emotion) | |
emotion_placeholder.line_chart(real_time_emotions) # Affichage graphique des émotions | |
# Arrêt de l'enregistrement | |
stream.stop_stream() | |
stream.close() | |
audio.terminate() | |
# Sauvegarde de l'audio enregistré | |
wf = wave.open("output.wav", "wb") | |
wf.setnchannels(CHANNELS) | |
wf.setsampwidth(audio.get_sample_size(FORMAT)) | |
wf.setframerate(RATE) | |
wf.writeframes(b"".join(frames)) | |
wf.close() | |
# Prédiction finale sur tout l'audio enregistré | |
full_audio_data = np.frombuffer(b''.join(frames), dtype=np.int16) | |
final_emotion = predict_emotion(full_audio_data) | |
final_emotion_placeholder.write(f"Émotion finale prédite : {final_emotion}") | |