Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
# Prédit 33% environ partout (dans le cas 3 classes) | |
# class EmotionClassifier(nn.Module): | |
# def __init__(self, feature_dim, num_labels): | |
# super(EmotionClassifier, self).__init__() | |
# self.fc1 = nn.Linear(feature_dim, 256) | |
# self.relu = nn.ReLU() | |
# self.dropout = nn.Dropout(0.3) | |
# self.fc2 = nn.Linear(256, num_labels) | |
# def forward(self, x): | |
# x = self.fc1(x) | |
# x = self.relu(x) | |
# x = self.dropout(x) | |
# return self.fc2(x) | |
class EmotionClassifier(nn.Module): | |
def __init__(self, feature_dim, num_labels=3): | |
super(EmotionClassifier, self).__init__() | |
self.fc = nn.Linear(feature_dim.config.hidden_size, num_labels) | |
self.softmax = nn.Softmax(dim=1) | |
def forward(self, input_values): | |
outputs = self(input_values).last_hidden_state | |
pooled_output = torch.mean(outputs, dim=1) | |
logits = self.fc(pooled_output) | |
return self.softmax(logits) | |