SISE-ULTIMATE-CHALLENGE / src /model /emotion_classifier.py
Cyr-CK's picture
Updated app
233adb5
raw
history blame
1.02 kB
import torch
import torch.nn as nn
# Prédit 33% environ partout (dans le cas 3 classes)
# class EmotionClassifier(nn.Module):
# def __init__(self, feature_dim, num_labels):
# super(EmotionClassifier, self).__init__()
# self.fc1 = nn.Linear(feature_dim, 256)
# self.relu = nn.ReLU()
# self.dropout = nn.Dropout(0.3)
# self.fc2 = nn.Linear(256, num_labels)
# def forward(self, x):
# x = self.fc1(x)
# x = self.relu(x)
# x = self.dropout(x)
# return self.fc2(x)
class EmotionClassifier(nn.Module):
def __init__(self, feature_dim, num_labels=3):
super(EmotionClassifier, self).__init__()
self.fc = nn.Linear(feature_dim.config.hidden_size, num_labels)
self.softmax = nn.Softmax(dim=1)
def forward(self, input_values):
outputs = self(input_values).last_hidden_state
pooled_output = torch.mean(outputs, dim=1)
logits = self.fc(pooled_output)
return self.softmax(logits)