|
import librosa |
|
import torch |
|
import pandas as pd |
|
from torch.utils.data import Dataset |
|
import os |
|
|
|
class EmotionDataset(Dataset): |
|
def __init__(self, csv_file, processor): |
|
self.data = pd.read_csv(csv_file, sep=",", header=0) |
|
|
|
self.processor = processor |
|
self.emotion_labels = {"joie": 0, "colere": 1, "neutre": 2} |
|
|
|
|
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def __getitem__(self, idx): |
|
base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data")) |
|
audio_file = self.data.iloc[idx, 0] |
|
label = self.emotion_labels[self.data.iloc[idx, 1].strip()] |
|
|
|
audio_path = os.path.join(base_path, audio_file) |
|
waveform, _ = librosa.load(audio_path, sr=16000) |
|
input_values = self.processor(waveform, return_tensors="pt", sampling_rate=16000).input_values |
|
|
|
return input_values.squeeze(0), torch.tensor(label, dtype=torch.long) |
|
|
|
|