File size: 2,416 Bytes
da29f64
17454f4
d3c0266
25f4593
 
7df1fb1
25f4593
da29f64
f4985f7
17454f4
df80fb7
 
 
17454f4
df80fb7
17454f4
df80fb7
17454f4
 
 
 
 
 
 
 
df80fb7
17454f4
 
 
 
 
 
 
 
 
 
 
df80fb7
17454f4
df80fb7
17454f4
df80fb7
17454f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df80fb7
17454f4
e6e87d3
17454f4
 
 
 
e6e87d3
17454f4
df80fb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
title: Sise Challenge Emotional Report
emoji: ๐ŸŽค
colorFrom: yellow
colorTo: green
sdk: docker
pinned: false
---

# SISE Ultimate Challenge - Emotional Report



Welcome to **Emotional Report**! This AI-powered application lets users send or record an audio clip ๐Ÿ“ข, analyzing their emotional state based on vocal tone and speed. The AI predicts whether the emotion falls into one of three categories: **Anger (Colรจre) ๐Ÿ˜ก, Joy (Joie) ๐Ÿ˜ƒ, or Neutral (Neutre) ๐Ÿ˜**.

Using **Wav2Vec**, a pre-trained AI model, the app not only detects emotions but also attempts to transcribe the speech into text. ๐Ÿง ๐ŸŽ™๏ธ

---

## ๐ŸŽฌ Fun Fact

The name **Emotional Report** is inspired by the movie *Minority Report*, where AI predicts crimes before they happen! ๐Ÿ”ฎ
This challenge is the **Ultimate Challenge** for Master SISE students. ๐Ÿ†

---

## ๐Ÿ‘€ Overview

This project features a **Streamlit-based dashboard** ๐Ÿ“Š that helps analyze security logs, data trends, and apply machine learning models.

### โœจ Features

โœ… **Home** - Overview of the challenge ๐Ÿ 
โœ… **Analytics** - Visualize & analyze security logs and data trends ๐Ÿ“ˆ
โœ… **Machine Learning** - Train & evaluate ML models ๐Ÿค–

---

## ๐Ÿš€ Installation Guide

### ๐Ÿ”ง Local Setup

Follow these steps to run the project locally:

1. **Clone the repository:**
   ```sh
   git clone https://github.com/jdalfons/sise-ultimate-challenge.git
   cd sise-ultimate-challenge
   ```
2. **Create and activate a virtual environment:**
   ```sh
   python3 -m venv venv
   source venv/bin/activate  # On Windows, use `venv\Scripts\activate`
   ```
3. **Install dependencies:**
   ```sh
   pip install -r requirements.txt
   ```
4. **Run the Streamlit application:**
   ```sh
   streamlit run app.py
   ```

### ๐Ÿณ Docker Setup

1. **Build the Docker image:**
   ```sh
   docker build -t sise-ultimate-challenge .
   ```
2. **Run the container:**
   ```sh
   docker run -p 7860:7860 sise-ultimate-challenge
   ```

---

## โš™๏ธ Technical Details

- ๐Ÿ **Python 3.12**
- ๐ŸŽจ **Streamlit**
- ๐ŸŽ™๏ธ **Wav2Vec2**

---

## ๐Ÿค Contributors

- [Cyril KOCAB](https://github.com/Cyr-CK) ๐Ÿ‘จโ€๐Ÿ’ป
- [Falonne KPAMEGAN](https://github.com/marinaKpamegan) ๐Ÿ‘ฉโ€๐Ÿ’ป
- [Juan ALFONSO](https://github.com/jdalfons) ๐ŸŽค
- [Nancy RANDRIAMIARIJAONA](https://github.com/yminanc) ๐Ÿ”

๐Ÿ”ฅ *Join us in making AI-powered emotion detection awesome!*