Spaces:
Sleeping
Sleeping
File size: 2,416 Bytes
da29f64 17454f4 d3c0266 25f4593 7df1fb1 25f4593 da29f64 f4985f7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 df80fb7 17454f4 e6e87d3 17454f4 e6e87d3 17454f4 df80fb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
title: Sise Challenge Emotional Report
emoji: ๐ค
colorFrom: yellow
colorTo: green
sdk: docker
pinned: false
---
# SISE Ultimate Challenge - Emotional Report
Welcome to **Emotional Report**! This AI-powered application lets users send or record an audio clip ๐ข, analyzing their emotional state based on vocal tone and speed. The AI predicts whether the emotion falls into one of three categories: **Anger (Colรจre) ๐ก, Joy (Joie) ๐, or Neutral (Neutre) ๐**.
Using **Wav2Vec**, a pre-trained AI model, the app not only detects emotions but also attempts to transcribe the speech into text. ๐ง ๐๏ธ
---
## ๐ฌ Fun Fact
The name **Emotional Report** is inspired by the movie *Minority Report*, where AI predicts crimes before they happen! ๐ฎ
This challenge is the **Ultimate Challenge** for Master SISE students. ๐
---
## ๐ Overview
This project features a **Streamlit-based dashboard** ๐ that helps analyze security logs, data trends, and apply machine learning models.
### โจ Features
โ
**Home** - Overview of the challenge ๐
โ
**Analytics** - Visualize & analyze security logs and data trends ๐
โ
**Machine Learning** - Train & evaluate ML models ๐ค
---
## ๐ Installation Guide
### ๐ง Local Setup
Follow these steps to run the project locally:
1. **Clone the repository:**
```sh
git clone https://github.com/jdalfons/sise-ultimate-challenge.git
cd sise-ultimate-challenge
```
2. **Create and activate a virtual environment:**
```sh
python3 -m venv venv
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
```
3. **Install dependencies:**
```sh
pip install -r requirements.txt
```
4. **Run the Streamlit application:**
```sh
streamlit run app.py
```
### ๐ณ Docker Setup
1. **Build the Docker image:**
```sh
docker build -t sise-ultimate-challenge .
```
2. **Run the container:**
```sh
docker run -p 7860:7860 sise-ultimate-challenge
```
---
## โ๏ธ Technical Details
- ๐ **Python 3.12**
- ๐จ **Streamlit**
- ๐๏ธ **Wav2Vec2**
---
## ๐ค Contributors
- [Cyril KOCAB](https://github.com/Cyr-CK) ๐จโ๐ป
- [Falonne KPAMEGAN](https://github.com/marinaKpamegan) ๐ฉโ๐ป
- [Juan ALFONSO](https://github.com/jdalfons) ๐ค
- [Nancy RANDRIAMIARIJAONA](https://github.com/yminanc) ๐
๐ฅ *Join us in making AI-powered emotion detection awesome!*
|