Spaces:
Sleeping
Sleeping
File size: 1,620 Bytes
732a8f8 730469b 892819b 730469b 892819b 730469b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import torch
import torch.optim as optim
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import Wav2Vec2Processor
from emotion_dataset import EmotionDataset
from emotion_classifier import Wav2Vec2EmotionClassifier
import os
from utils import collate_fn
# Charger le processeur et le dataset
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-xlsr-53-french")
data_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "..", "data", "dataset.csv"))
if not os.path.exists(data_path):
raise FileNotFoundError(f"Le fichier {data_path} est introuvable.")
dataset = EmotionDataset(data_path, processor)
dataloader = DataLoader(dataset, batch_size=4, shuffle=True, collate_fn=collate_fn) # collate_fn ajouté
# Initialiser le modèle
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Wav2Vec2EmotionClassifier().to(device)
# Définir la fonction de perte et l'optimiseur
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
# Entraînement du modèle
num_epochs = 10
for epoch in range(num_epochs):
model.train()
total_loss = 0
for inputs, labels in dataloader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
print(f"Epoch {epoch+1}, Loss: {total_loss:.4f}")
# Sauvegarde du modèle
torch.save(model.state_dict(), "wav2vec2_emotion.pth")
print("Modèle sauvegardé !")
|