Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the necessary libraries and modules
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from transformers import ViTImageProcessor, ViTFeatureExtractor, FlaxViTForImageClassification, ViTModel
|
6 |
+
from PIL import Image
|
7 |
+
import requests
|
8 |
+
import os
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torchvision
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
|
14 |
+
|
15 |
+
def visualize_attention(name):
|
16 |
+
model_name = name.split(";")[0]
|
17 |
+
if len(name.split(";"))>1:
|
18 |
+
url = name.split(";")[1]
|
19 |
+
else:
|
20 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
21 |
+
feature_extractor = ViTImageProcessor.from_pretrained(model_name, size=480)
|
22 |
+
|
23 |
+
pil_image = Image.open(requests.get(url, stream=True).raw)
|
24 |
+
device = "cpu"
|
25 |
+
pixel_values = feature_extractor(images=pil_image, return_tensors="pt").pixel_values.to(device)
|
26 |
+
model = ViTModel.from_pretrained(model_name, add_pooling_layer=False)
|
27 |
+
|
28 |
+
model.to(device)
|
29 |
+
outputs = model(pixel_values, output_attentions=True, interpolate_pos_encoding=True)
|
30 |
+
attentions = outputs.attentions[-1] # we are only interested in the attention maps of the last layer
|
31 |
+
nh = attentions.shape[1] # number of head
|
32 |
+
|
33 |
+
# we keep only the output patch attention
|
34 |
+
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
|
35 |
+
threshold = 0.6
|
36 |
+
w_featmap = pixel_values.shape[-2] // model.config.patch_size
|
37 |
+
h_featmap = pixel_values.shape[-1] // model.config.patch_size
|
38 |
+
|
39 |
+
# we keep only a certain percentage of the mass
|
40 |
+
val, idx = torch.sort(attentions)
|
41 |
+
val /= torch.sum(val, dim=1, keepdim=True)
|
42 |
+
cumval = torch.cumsum(val, dim=1)
|
43 |
+
th_attn = cumval > (1 - threshold)
|
44 |
+
idx2 = torch.argsort(idx)
|
45 |
+
for head in range(nh):
|
46 |
+
th_attn[head] = th_attn[head][idx2[head]]
|
47 |
+
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
|
48 |
+
# interpolate
|
49 |
+
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu().numpy()
|
50 |
+
|
51 |
+
attentions = attentions.reshape(nh, w_featmap, h_featmap)
|
52 |
+
attentions = nn.functional.interpolate(attentions.unsqueeze(0), scale_factor=model.config.patch_size, mode="nearest")[0].cpu()
|
53 |
+
attentions = attentions.detach().numpy()
|
54 |
+
|
55 |
+
# show and save attentions heatmaps
|
56 |
+
output_dir = '.'
|
57 |
+
os.makedirs(output_dir, exist_ok=True)
|
58 |
+
torchvision.utils.save_image(torchvision.utils.make_grid(pixel_values, normalize=True, scale_each=True), os.path.join(output_dir, "img.png"))
|
59 |
+
for j in range(nh):
|
60 |
+
fname = os.path.join(output_dir, "attn-head" + str(j) + ".png")
|
61 |
+
plt.figure()
|
62 |
+
plt.imshow(attentions[j])
|
63 |
+
plt.imsave(fname=fname, arr=attentions[j], format='png')
|
64 |
+
images = []
|
65 |
+
for j in range(nh):
|
66 |
+
images.append(Image.open(os.path.join(output_dir, "attn-head" + str(j) + ".png")))
|
67 |
+
return images
|
68 |
+
|
69 |
+
|
70 |
+
text_input = gr.Textbox(label="Enter the name of the model to use and optionally add in your own image jpg url with ; as a separator try out this: facebook/dino-vits8; https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Cat03.jpg/481px-Cat03.jpg", placeholder = "facebook/dino-vits8; optionalurl.jpg")
|
71 |
+
attention_output = gr.Gallery(label="Attention Map")
|
72 |
+
|
73 |
+
iface = gr.Interface(
|
74 |
+
fn=visualize_attention,
|
75 |
+
inputs=text_input,
|
76 |
+
outputs=attention_output,
|
77 |
+
live=True,
|
78 |
+
capture_session=True,
|
79 |
+
title="Visualize Attention Maps",
|
80 |
+
description="This app uses a Vision Transformer to visualize the attention maps of an image.",
|
81 |
+
)
|
82 |
+
|
83 |
+
iface.launch()
|