""" Copyright (c) 2022, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from copy import deepcopy import numpy as np import torch import torch.nn.functional as F from lavis.common.registry import registry from lavis.common.utils import get_abs_path from lavis.models.albef_models import AlbefBase from lavis.models.albef_models.albef_outputs import ( AlbefIntermediateOutput, AlbefOutput, AlbefSimilarity, ) from lavis.models.base_model import MomentumDistilationMixin, SharedQueueMixin from lavis.models.med import BertForMaskedLM from lavis.models.vit import VisionTransformerEncoder from torch import nn from transformers import BertConfig @registry.register_model("albef_pretrain") class AlbefPretrain(AlbefBase, MomentumDistilationMixin, SharedQueueMixin): """ ALBEF pretrain model. Supported model types: - base: ALBEF base model used for pretraining. """ PRETRAINED_MODEL_CONFIG_DICT = { "base": "configs/models/albef_pretrain_base.yaml", } def __init__( self, image_encoder, text_encoder, queue_size, embed_dim=256, mlm_mask_prob=0.15, temp=0.07, momentum=0.995, alpha=0.4, max_txt_len=30, ): super().__init__() self.tokenizer = self.init_tokenizer() self.visual_encoder = image_encoder self.text_encoder = text_encoder text_width = text_encoder.config.hidden_size vision_width = image_encoder.vision_width self.embed_dim = embed_dim self.vision_proj = nn.Linear(vision_width, embed_dim) self.text_proj = nn.Linear(text_width, embed_dim) self.itm_head = nn.Linear(text_width, 2) # create the momentum encoder self.visual_encoder_m = deepcopy(self.visual_encoder) self.text_encoder_m = deepcopy(self.text_encoder) self.vision_proj_m = deepcopy(self.vision_proj) self.text_proj_m = deepcopy(self.text_proj) self.model_pairs = [ [self.visual_encoder, self.visual_encoder_m], [self.text_encoder, self.text_encoder_m], [self.vision_proj, self.vision_proj_m], [self.text_proj, self.text_proj_m], ] self.copy_params() # create the queue self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) self.image_queue = nn.functional.normalize(self.image_queue, dim=0) self.text_queue = nn.functional.normalize(self.text_queue, dim=0) self.queue_size = queue_size self.momentum = momentum self.temp = nn.Parameter(temp * torch.ones([])) self.alpha = alpha self.max_txt_len = max_txt_len self.mlm_probability = mlm_mask_prob def _rampup_factor(self, epoch, iters, num_iters_per_epoch): return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch)) def forward(self, samples): """ Args: samples (dict): A dictionary containing the following keys: - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224. - text_input (list): A list of length batch_size, each element is a string of text/caption. - epoch (int): The current epoch. - iters (int): The current iteration. - num_iters_per_epoch (int): The number of iterations per epoch. Returns: BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details. Examples: >>> import torch >>> from lavis.models import load_model >>> model = load_model("albef_pretrain") >>> images = torch.randn(4, 3, 224, 224) >>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"] >>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100} >>> output = model(samples) >>> output.keys() odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_mlm']) """ image = samples["image"] caption = samples["text_input"] alpha = self.alpha * self._rampup_factor( epoch=samples["epoch"], iters=samples["iters"], num_iters_per_epoch=samples["num_iters_per_epoch"], ) with torch.no_grad(): self.temp.clamp_(0.001, 0.5) image_embeds = self.visual_encoder.forward_features(image) image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( self.device ) text = self.tokenizer( caption, padding="max_length", truncation=True, max_length=self.max_txt_len, return_tensors="pt", ).to(self.device) image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) text_output = self.text_encoder.bert( text.input_ids, attention_mask=text.attention_mask, return_dict=True, mode="text", ) text_embeds = text_output.last_hidden_state text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1) # get momentum features with torch.no_grad(): self._momentum_update() image_embeds_m = self.visual_encoder_m(image) image_feat_m = F.normalize( self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1 ) image_feat_all = torch.cat( [image_feat_m.t(), self.image_queue.clone().detach()], dim=1 ) text_output_m = self.text_encoder_m.bert( text.input_ids, attention_mask=text.attention_mask, return_dict=True, mode="text", ) text_embeds_m = text_output_m.last_hidden_state text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1) text_feat_all = torch.cat( [text_feat_m.t(), self.text_queue.clone().detach()], dim=1 ) sim_i2t_m = image_feat_m @ text_feat_all / self.temp sim_t2i_m = text_feat_m @ image_feat_all / self.temp sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device) sim_targets.fill_diagonal_(1) sim_i2t_targets = ( alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets ) sim_t2i_targets = ( alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets ) sim_i2t = image_feat @ text_feat_all / self.temp sim_t2i = text_feat @ image_feat_all / self.temp loss_i2t = -torch.sum( F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1 ).mean() loss_t2i = -torch.sum( F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1 ).mean() loss_itc = (loss_i2t + loss_t2i) / 2 self._dequeue_and_enqueue(image_feat_m, text_feat_m) # forward the positve image-text pair encoder_output_pos = self.text_encoder.bert( encoder_embeds=text_embeds, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, mode="fusion", ) with torch.no_grad(): bs = image.size(0) weights_i2t = sim_i2t[:, :bs].clone() weights_t2i = sim_t2i[:, :bs].clone() weights_i2t.fill_diagonal_(-np.Inf) weights_t2i.fill_diagonal_(-np.Inf) weights_i2t = F.softmax(weights_i2t, dim=1) weights_t2i = F.softmax(weights_t2i, dim=1) # select a negative image for each text image_embeds_neg = [] for b in range(bs): neg_idx = torch.multinomial(weights_t2i[b], 1).item() image_embeds_neg.append(image_embeds[neg_idx]) image_embeds_neg = torch.stack(image_embeds_neg, dim=0) # select a negative text for each image text_embeds_neg = [] text_atts_neg = [] for b in range(bs): neg_idx = torch.multinomial(weights_i2t[b], 1).item() text_embeds_neg.append(text_embeds[neg_idx]) text_atts_neg.append(text.attention_mask[neg_idx]) text_embeds_neg = torch.stack(text_embeds_neg, dim=0) text_atts_neg = torch.stack(text_atts_neg, dim=0) text_embeds_all = torch.cat([text_embeds, text_embeds_neg], dim=0) text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0) image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0) image_atts_all = torch.cat([image_atts, image_atts], dim=0) encoder_output_neg = self.text_encoder.bert( encoder_embeds=text_embeds_all, attention_mask=text_atts_all, encoder_hidden_states=image_embeds_all, encoder_attention_mask=image_atts_all, return_dict=True, mode="fusion", ) vl_embeddings = torch.cat( [ encoder_output_pos.last_hidden_state[:, 0, :], encoder_output_neg.last_hidden_state[:, 0, :], ], dim=0, ) itm_logits = self.itm_head(vl_embeddings) itm_labels = torch.cat( [torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)], dim=0, ).to(self.device) loss_itm = F.cross_entropy(itm_logits, itm_labels) # MLM input_ids = text.input_ids.clone() labels = input_ids.clone() probability_matrix = torch.full(labels.shape, self.mlm_probability) input_ids, labels = self.mask( input_ids, self.text_encoder.config.vocab_size, self.device, targets=labels, probability_matrix=probability_matrix, ) with torch.no_grad(): logits_m = self.text_encoder_m( input_ids, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds_m, encoder_attention_mask=image_atts, return_dict=True, return_logits=True, ) mlm_output = self.text_encoder( input_ids, attention_mask=text.attention_mask, encoder_hidden_states=image_embeds, encoder_attention_mask=image_atts, return_dict=True, labels=labels, soft_labels=F.softmax(logits_m, dim=-1), alpha=alpha, ) loss_mlm = mlm_output.loss return AlbefOutput( loss=loss_itc + loss_itm + loss_mlm, loss_itc=loss_itc, loss_itm=loss_itm, loss_mlm=loss_mlm, sims=AlbefSimilarity( sim_i2t=sim_i2t, sim_t2i=sim_t2i, sim_i2t_m=sim_i2t_m, sim_t2i_m=sim_t2i_m, sim_i2t_targets=sim_i2t_targets, sim_t2i_targets=sim_t2i_targets, ), intermediate_output=AlbefIntermediateOutput( image_embeds=image_embeds, image_embeds_m=image_embeds_m, text_embeds=text_embeds, text_embeds_m=text_embeds_m, encoder_output=encoder_output_pos, encoder_output_neg=encoder_output_neg, itm_logits=itm_logits, itm_labels=itm_labels, ), ) def mask( self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None, ): """ Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. """ if masked_indices is None: masked_indices = torch.bernoulli(probability_matrix).bool() masked_indices[input_ids == self.tokenizer.pad_token_id] = False masked_indices[input_ids == self.tokenizer.cls_token_id] = False if targets is not None: targets[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = ( torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices ) input_ids[indices_replaced] = self.tokenizer.mask_token_id # 10% of the time, we replace masked input tokens with random word indices_random = ( torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced ) random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to( device ) input_ids[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged if targets is not None: return input_ids, targets else: return input_ids @classmethod def from_config(cls, cfg=None): image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True) config_text_encoder = BertConfig.from_json_file( get_abs_path(cfg["med_config_path"]) ) config_text_encoder.fusion_layer = 6 text_encoder = BertForMaskedLM.from_pretrained( "bert-base-uncased", config=config_text_encoder ) embed_dim = cfg.get("embed_dim", 256) momentum = cfg.get("momentum", 0.995) alpha = cfg.get("alpha", 0.4) mlm_mask_prob = cfg.get("mlm_mask_prob", 0.15) temp = cfg.get("temp", 0.07) max_txt_len = cfg.get("max_txt_len", 30) queue_size = cfg.get("queue_size", 65536) model = cls( image_encoder=image_encoder, text_encoder=text_encoder, queue_size=queue_size, embed_dim=embed_dim, mlm_mask_prob=mlm_mask_prob, temp=temp, momentum=momentum, alpha=alpha, max_txt_len=max_txt_len, ) return model