Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
from copy import deepcopy | |
import torch | |
import torch.nn.functional as F | |
from lavis.common.registry import registry | |
from lavis.models.base_model import MomentumDistilationMixin, SharedQueueMixin | |
from lavis.models.blip_models import tie_encoder_decoder_weights | |
from lavis.models.blip_models.blip import BlipBase | |
from lavis.models.blip_models.blip_outputs import ( | |
BlipOutput, | |
BlipSimilarity, | |
BlipIntermediateOutput, | |
) | |
from lavis.models.med import XBertEncoder, XBertLMHeadDecoder | |
from lavis.models.vit import VisionTransformerEncoder | |
from torch import nn | |
class BlipPretrain(BlipBase, SharedQueueMixin, MomentumDistilationMixin): | |
""" | |
BLIP pretrain model. | |
Supported model types: | |
- base: BLIP base model before pretraining. | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"base": "configs/models/blip_pretrain_base.yaml", | |
# "large": "configs/models/blip_pretrain_large.yaml", | |
} | |
def __init__( | |
self, | |
image_encoder, | |
text_encoder, | |
text_decoder, | |
queue_size, | |
alpha=0.4, | |
embed_dim=256, | |
momentum=0.995, | |
tie_enc_dec_weights=True, | |
max_txt_len=30, | |
): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
text_encoder.resize_token_embeddings(len(self.tokenizer)) | |
text_decoder.resize_token_embeddings(len(self.tokenizer)) | |
if tie_enc_dec_weights: | |
tie_encoder_decoder_weights( | |
encoder=text_encoder, | |
decoder=text_decoder.bert, | |
base_model_prefix="", | |
skip_key="/attention", | |
) | |
self.visual_encoder = image_encoder | |
self.text_encoder = text_encoder | |
self.text_decoder = text_decoder | |
# creating projection layers for ITC | |
text_width = text_encoder.config.hidden_size | |
vision_width = image_encoder.vision_width | |
self.vision_proj = nn.Linear(vision_width, embed_dim) | |
self.text_proj = nn.Linear(text_width, embed_dim) | |
self.itm_head = nn.Linear(text_width, 2) | |
# create the momentum encoder | |
self.visual_encoder_m = deepcopy(self.visual_encoder) | |
self.text_encoder_m = deepcopy(self.text_encoder) | |
self.vision_proj_m = deepcopy(self.vision_proj) | |
self.text_proj_m = deepcopy(self.text_proj) | |
self.model_pairs = [ | |
[self.visual_encoder, self.visual_encoder_m], | |
[self.text_encoder, self.text_encoder_m], | |
[self.vision_proj, self.vision_proj_m], | |
[self.text_proj, self.text_proj_m], | |
] | |
self.copy_params() | |
# create the queue | |
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size)) | |
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size)) | |
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long)) | |
self.image_queue = nn.functional.normalize(self.image_queue, dim=0) | |
self.text_queue = nn.functional.normalize(self.text_queue, dim=0) | |
self.queue_size = queue_size | |
self.momentum = momentum | |
self.temp = nn.Parameter(0.07 * torch.ones([])) | |
self.alpha = alpha | |
self.max_txt_len = max_txt_len | |
def _rampup_factor(self, epoch, iters, num_iters_per_epoch): | |
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch)) | |
def forward(self, samples): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224. | |
- text_input (list): A list of length batch_size, each element is a string of text/caption. | |
- epoch (int): The current epoch. | |
- iters (int): The current iteration. | |
- num_iters_per_epoch (int): The number of iterations per epoch. | |
Returns: | |
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details. | |
Examples: | |
>>> import torch | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip_pretrain", "base") | |
>>> images = torch.randn(4, 3, 224, 224) | |
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"] | |
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100} | |
>>> output = model(samples) | |
>>> output.keys() | |
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_lm']) | |
>>> output.intermediate_output.keys() | |
odict_keys(['image_embeds', 'text_embeds', 'image_embeds_m', 'text_embeds_m', 'encoder_output', 'encoder_output_neg', 'itm_logits', 'itm_labels', 'decoder_output', 'decoder_labels']) | |
>>> output.intermediate_output.image_embeds.shape | |
>>> # shape: (batch_size, num_patches, embed_dim) | |
torch.Size([4, 197, 768]) | |
>>> output.intermediate_output.text_embeds.shape | |
>>> # shape: (batch_size, max_txt_len, embed_dim) | |
torch.Size([4, 30, 768]) | |
>>> output.intermediate_output.image_embeds_m.shape | |
>>> # shape: (batch_size, num_patches, embed_dim) | |
torch.Size([4, 197, 768]) | |
>>> output.intermediate_output.text_embeds_m.shape | |
>>> # shape: (batch_size, max_txt_len, embed_dim) | |
torch.Size([4, 30, 768]) | |
>>> output.intermediate_output.itm_logits.shape | |
>>> # shape: (batch_size * 3, 2) | |
torch.Size([12, 2]) | |
>>> output.intermediate_output.itm_labels.shape | |
>>> # shape: (batch_size * 3,) | |
torch.Size([12]) | |
>>> output.intermediate_output.encoder_output.last_hidden_state.shape | |
>>> # shape: (batch_size, max_txt_len, embed_dim) | |
torch.Size([4, 30, 768]) | |
>>> output.intermediate_output.encoder_output_m.last_hidden_state.shape | |
>>> # shape: (batch_size, max_txt_len, embed_dim) | |
torch.Size([4, 30, 768]) | |
>>> output.intermediate_output.decoder_output.logits.shape | |
>>> # shape: (batch_size, max_txt_len, vocab_size) | |
torch.Size([4, 30, 30524]) | |
>>> output.intermediate_output.decoder_labels.shape | |
>>> # shape: (batch_size, max_txt_len) | |
torch.Size([4, 30]) | |
""" | |
image = samples["image"] | |
caption = samples["text_input"] | |
alpha = self.alpha * self._rampup_factor( | |
epoch=samples["epoch"], | |
iters=samples["iters"], | |
num_iters_per_epoch=samples["num_iters_per_epoch"], | |
) | |
with torch.no_grad(): | |
self.temp.clamp_(0.001, 0.5) | |
# image embeddings and features | |
image_embeds = self.visual_encoder.forward_features(image) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1) | |
text = self.tokenizer( | |
caption, | |
padding="max_length", | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(image.device) | |
# text embeddings and features | |
text_output = self.text_encoder.forward_text(text) | |
text_embeds = text_output.last_hidden_state | |
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1) | |
# get momentum features | |
with torch.no_grad(): | |
self._momentum_update() | |
image_embeds_m = self.visual_encoder_m(image) | |
image_feat_m = F.normalize( | |
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1 | |
) | |
image_feat_all = torch.cat( | |
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1 | |
) | |
text_output_m = self.text_encoder_m.forward_text(text) | |
text_embeds_m = text_output_m.last_hidden_state | |
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1) | |
text_feat_all = torch.cat( | |
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1 | |
) | |
sim_i2t_m = image_feat_m @ text_feat_all / self.temp | |
sim_t2i_m = text_feat_m @ image_feat_all / self.temp | |
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device) | |
sim_targets.fill_diagonal_(1) | |
sim_i2t_targets = ( | |
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets | |
) | |
sim_t2i_targets = ( | |
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets | |
) | |
sim_i2t = image_feat @ text_feat_all / self.temp | |
sim_t2i = text_feat @ image_feat_all / self.temp | |
loss_i2t = -torch.sum( | |
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1 | |
).mean() | |
loss_t2i = -torch.sum( | |
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1 | |
).mean() | |
loss_itc = (loss_i2t + loss_t2i) / 2 | |
self._dequeue_and_enqueue(image_feat_m, text_feat_m) | |
# Image-text Matching | |
encoder_input_ids = text.input_ids.clone() | |
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id | |
# forward the positve image-text pair | |
bs = image.size(0) | |
output_pos = self.text_encoder( | |
encoder_input_ids, | |
attention_mask=text.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
with torch.no_grad(): | |
weights_t2i = F.softmax(sim_t2i[:, :bs], dim=1) + 1e-4 | |
weights_t2i.fill_diagonal_(0) | |
weights_i2t = F.softmax(sim_i2t[:, :bs], dim=1) + 1e-4 | |
weights_i2t.fill_diagonal_(0) | |
# select a negative image for each text | |
image_embeds_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
image_embeds_neg.append(image_embeds[neg_idx]) | |
image_embeds_neg = torch.stack(image_embeds_neg, dim=0) | |
# select a negative text for each image | |
text_ids_neg = [] | |
text_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
text_ids_neg.append(encoder_input_ids[neg_idx]) | |
text_atts_neg.append(text.attention_mask[neg_idx]) | |
text_ids_neg = torch.stack(text_ids_neg, dim=0) | |
text_atts_neg = torch.stack(text_atts_neg, dim=0) | |
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0) | |
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0) | |
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0) | |
image_atts_all = torch.cat([image_atts, image_atts], dim=0) | |
output_neg = self.text_encoder( | |
text_ids_all, | |
attention_mask=text_atts_all, | |
encoder_hidden_states=image_embeds_all, | |
encoder_attention_mask=image_atts_all, | |
return_dict=True, | |
) | |
vl_embeddings = torch.cat( | |
[ | |
output_pos.last_hidden_state[:, 0, :], | |
output_neg.last_hidden_state[:, 0, :], | |
], | |
dim=0, | |
) | |
itm_logits = self.itm_head(vl_embeddings) | |
itm_labels = torch.cat( | |
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)], | |
dim=0, | |
).to(image.device) | |
loss_itm = F.cross_entropy(itm_logits, itm_labels) | |
# LM | |
decoder_input_ids = text.input_ids.clone() | |
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id | |
decoder_targets = decoder_input_ids.masked_fill( | |
decoder_input_ids == self.tokenizer.pad_token_id, -100 | |
) | |
decoder_output = self.text_decoder( | |
decoder_input_ids, | |
attention_mask=text.attention_mask, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
labels=decoder_targets, | |
return_dict=True, | |
) | |
loss_lm = decoder_output.loss | |
return BlipOutput( | |
loss=loss_itc + loss_itm + loss_lm, | |
loss_itc=loss_itc, | |
loss_itm=loss_itm, | |
loss_lm=loss_lm, | |
sims=BlipSimilarity( | |
sim_i2t=sim_i2t, | |
sim_t2i=sim_t2i, | |
sim_i2t_m=sim_i2t_m, | |
sim_t2i_m=sim_t2i_m, | |
sim_i2t_targets=sim_i2t_targets, | |
sim_t2i_targets=sim_t2i_targets, | |
), | |
intermediate_output=BlipIntermediateOutput( | |
image_embeds=image_embeds, | |
text_embeds=text_embeds, | |
image_embeds_m=image_embeds_m, | |
text_embeds_m=text_embeds_m, | |
encoder_output=output_pos, | |
encoder_output_neg=output_neg, | |
itm_logits=itm_logits, | |
itm_labels=itm_labels, | |
decoder_output=decoder_output, | |
decoder_labels=decoder_targets, | |
), | |
) | |
def reset_queue_ptr(self): | |
self.queue_ptr = torch.zeros(1, dtype=torch.long) | |
def from_config(cls, cfg=None): | |
# set from_pretrained=True to load weights for 'bert-base-uncased' | |
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True) | |
text_encoder = XBertEncoder.from_config(cfg, from_pretrained=True) | |
text_decoder = XBertLMHeadDecoder.from_config(cfg, from_pretrained=True) | |
embed_dim = cfg.get("embed_dim", 256) | |
momentum = cfg.get("momentum", 0.995) | |
alpha = cfg.get("alpha", 0.4) | |
max_txt_len = cfg.get("max_txt_len", 30) | |
queue_size = cfg.get("queue_size", 57600) | |
model = cls( | |
image_encoder=image_encoder, | |
text_encoder=text_encoder, | |
text_decoder=text_decoder, | |
embed_dim=embed_dim, | |
queue_size=queue_size, | |
momentum=momentum, | |
alpha=alpha, | |
tie_enc_dec_weights=True, | |
max_txt_len=max_txt_len, | |
) | |
# [IMPORTANT] to reset queue pointer to 0. | |
# Otherwise when updating last batch in the queue, the batch size and remaining queue length may be un-equal. | |
model.reset_queue_ptr() | |
return model | |