John6666's picture
Upload 351 files
e84842d verified
raw
history blame
15 kB
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from copy import deepcopy
import torch
import torch.nn.functional as F
from lavis.common.registry import registry
from lavis.models.base_model import MomentumDistilationMixin, SharedQueueMixin
from lavis.models.blip_models import tie_encoder_decoder_weights
from lavis.models.blip_models.blip import BlipBase
from lavis.models.blip_models.blip_outputs import (
BlipOutput,
BlipSimilarity,
BlipIntermediateOutput,
)
from lavis.models.med import XBertEncoder, XBertLMHeadDecoder
from lavis.models.vit import VisionTransformerEncoder
from torch import nn
@registry.register_model("blip_pretrain")
class BlipPretrain(BlipBase, SharedQueueMixin, MomentumDistilationMixin):
"""
BLIP pretrain model.
Supported model types:
- base: BLIP base model before pretraining.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"base": "configs/models/blip_pretrain_base.yaml",
# "large": "configs/models/blip_pretrain_large.yaml",
}
def __init__(
self,
image_encoder,
text_encoder,
text_decoder,
queue_size,
alpha=0.4,
embed_dim=256,
momentum=0.995,
tie_enc_dec_weights=True,
max_txt_len=30,
):
super().__init__()
self.tokenizer = self.init_tokenizer()
text_encoder.resize_token_embeddings(len(self.tokenizer))
text_decoder.resize_token_embeddings(len(self.tokenizer))
if tie_enc_dec_weights:
tie_encoder_decoder_weights(
encoder=text_encoder,
decoder=text_decoder.bert,
base_model_prefix="",
skip_key="/attention",
)
self.visual_encoder = image_encoder
self.text_encoder = text_encoder
self.text_decoder = text_decoder
# creating projection layers for ITC
text_width = text_encoder.config.hidden_size
vision_width = image_encoder.vision_width
self.vision_proj = nn.Linear(vision_width, embed_dim)
self.text_proj = nn.Linear(text_width, embed_dim)
self.itm_head = nn.Linear(text_width, 2)
# create the momentum encoder
self.visual_encoder_m = deepcopy(self.visual_encoder)
self.text_encoder_m = deepcopy(self.text_encoder)
self.vision_proj_m = deepcopy(self.vision_proj)
self.text_proj_m = deepcopy(self.text_proj)
self.model_pairs = [
[self.visual_encoder, self.visual_encoder_m],
[self.text_encoder, self.text_encoder_m],
[self.vision_proj, self.vision_proj_m],
[self.text_proj, self.text_proj_m],
]
self.copy_params()
# create the queue
self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
self.queue_size = queue_size
self.momentum = momentum
self.temp = nn.Parameter(0.07 * torch.ones([]))
self.alpha = alpha
self.max_txt_len = max_txt_len
def _rampup_factor(self, epoch, iters, num_iters_per_epoch):
return min(1, (epoch * num_iters_per_epoch + iters) / (2 * num_iters_per_epoch))
def forward(self, samples):
"""
Args:
samples (dict): A dictionary containing the following keys:
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W). The input images. Default: H=224, W=224.
- text_input (list): A list of length batch_size, each element is a string of text/caption.
- epoch (int): The current epoch.
- iters (int): The current iteration.
- num_iters_per_epoch (int): The number of iterations per epoch.
Returns:
BlipOutput: A BlipOutput object containing loss and intermediate output. See ``lavis.models.blip_models.blip_outputs.BlipOutput`` for more details.
Examples:
>>> import torch
>>> from lavis.models import load_model
>>> model = load_model("blip_pretrain", "base")
>>> images = torch.randn(4, 3, 224, 224)
>>> text_input = ["caption of image 1", "another caption of image 1", "caption of image 2", "caption of image 3"]
>>> samples = {"image": images, "text_input": text_input, "epoch": 0, "iters": 0, "num_iters_per_epoch": 100}
>>> output = model(samples)
>>> output.keys()
odict_keys(['sims', 'intermediate_output', 'loss', 'loss_itc', 'loss_itm', 'loss_lm'])
>>> output.intermediate_output.keys()
odict_keys(['image_embeds', 'text_embeds', 'image_embeds_m', 'text_embeds_m', 'encoder_output', 'encoder_output_neg', 'itm_logits', 'itm_labels', 'decoder_output', 'decoder_labels'])
>>> output.intermediate_output.image_embeds.shape
>>> # shape: (batch_size, num_patches, embed_dim)
torch.Size([4, 197, 768])
>>> output.intermediate_output.text_embeds.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.image_embeds_m.shape
>>> # shape: (batch_size, num_patches, embed_dim)
torch.Size([4, 197, 768])
>>> output.intermediate_output.text_embeds_m.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.itm_logits.shape
>>> # shape: (batch_size * 3, 2)
torch.Size([12, 2])
>>> output.intermediate_output.itm_labels.shape
>>> # shape: (batch_size * 3,)
torch.Size([12])
>>> output.intermediate_output.encoder_output.last_hidden_state.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.encoder_output_m.last_hidden_state.shape
>>> # shape: (batch_size, max_txt_len, embed_dim)
torch.Size([4, 30, 768])
>>> output.intermediate_output.decoder_output.logits.shape
>>> # shape: (batch_size, max_txt_len, vocab_size)
torch.Size([4, 30, 30524])
>>> output.intermediate_output.decoder_labels.shape
>>> # shape: (batch_size, max_txt_len)
torch.Size([4, 30])
"""
image = samples["image"]
caption = samples["text_input"]
alpha = self.alpha * self._rampup_factor(
epoch=samples["epoch"],
iters=samples["iters"],
num_iters_per_epoch=samples["num_iters_per_epoch"],
)
with torch.no_grad():
self.temp.clamp_(0.001, 0.5)
# image embeddings and features
image_embeds = self.visual_encoder.forward_features(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
image_feat = F.normalize(self.vision_proj(image_embeds[:, 0, :]), dim=-1)
text = self.tokenizer(
caption,
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
return_tensors="pt",
).to(image.device)
# text embeddings and features
text_output = self.text_encoder.forward_text(text)
text_embeds = text_output.last_hidden_state
text_feat = F.normalize(self.text_proj(text_embeds[:, 0, :]), dim=-1)
# get momentum features
with torch.no_grad():
self._momentum_update()
image_embeds_m = self.visual_encoder_m(image)
image_feat_m = F.normalize(
self.vision_proj_m(image_embeds_m[:, 0, :]), dim=-1
)
image_feat_all = torch.cat(
[image_feat_m.t(), self.image_queue.clone().detach()], dim=1
)
text_output_m = self.text_encoder_m.forward_text(text)
text_embeds_m = text_output_m.last_hidden_state
text_feat_m = F.normalize(self.text_proj_m(text_embeds_m[:, 0, :]), dim=-1)
text_feat_all = torch.cat(
[text_feat_m.t(), self.text_queue.clone().detach()], dim=1
)
sim_i2t_m = image_feat_m @ text_feat_all / self.temp
sim_t2i_m = text_feat_m @ image_feat_all / self.temp
sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
sim_targets.fill_diagonal_(1)
sim_i2t_targets = (
alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
)
sim_t2i_targets = (
alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
)
sim_i2t = image_feat @ text_feat_all / self.temp
sim_t2i = text_feat @ image_feat_all / self.temp
loss_i2t = -torch.sum(
F.log_softmax(sim_i2t, dim=1) * sim_i2t_targets, dim=1
).mean()
loss_t2i = -torch.sum(
F.log_softmax(sim_t2i, dim=1) * sim_t2i_targets, dim=1
).mean()
loss_itc = (loss_i2t + loss_t2i) / 2
self._dequeue_and_enqueue(image_feat_m, text_feat_m)
# Image-text Matching
encoder_input_ids = text.input_ids.clone()
encoder_input_ids[:, 0] = self.tokenizer.enc_token_id
# forward the positve image-text pair
bs = image.size(0)
output_pos = self.text_encoder(
encoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
with torch.no_grad():
weights_t2i = F.softmax(sim_t2i[:, :bs], dim=1) + 1e-4
weights_t2i.fill_diagonal_(0)
weights_i2t = F.softmax(sim_i2t[:, :bs], dim=1) + 1e-4
weights_i2t.fill_diagonal_(0)
# select a negative image for each text
image_embeds_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_t2i[b], 1).item()
image_embeds_neg.append(image_embeds[neg_idx])
image_embeds_neg = torch.stack(image_embeds_neg, dim=0)
# select a negative text for each image
text_ids_neg = []
text_atts_neg = []
for b in range(bs):
neg_idx = torch.multinomial(weights_i2t[b], 1).item()
text_ids_neg.append(encoder_input_ids[neg_idx])
text_atts_neg.append(text.attention_mask[neg_idx])
text_ids_neg = torch.stack(text_ids_neg, dim=0)
text_atts_neg = torch.stack(text_atts_neg, dim=0)
text_ids_all = torch.cat([encoder_input_ids, text_ids_neg], dim=0)
text_atts_all = torch.cat([text.attention_mask, text_atts_neg], dim=0)
image_embeds_all = torch.cat([image_embeds_neg, image_embeds], dim=0)
image_atts_all = torch.cat([image_atts, image_atts], dim=0)
output_neg = self.text_encoder(
text_ids_all,
attention_mask=text_atts_all,
encoder_hidden_states=image_embeds_all,
encoder_attention_mask=image_atts_all,
return_dict=True,
)
vl_embeddings = torch.cat(
[
output_pos.last_hidden_state[:, 0, :],
output_neg.last_hidden_state[:, 0, :],
],
dim=0,
)
itm_logits = self.itm_head(vl_embeddings)
itm_labels = torch.cat(
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)],
dim=0,
).to(image.device)
loss_itm = F.cross_entropy(itm_logits, itm_labels)
# LM
decoder_input_ids = text.input_ids.clone()
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id
decoder_targets = decoder_input_ids.masked_fill(
decoder_input_ids == self.tokenizer.pad_token_id, -100
)
decoder_output = self.text_decoder(
decoder_input_ids,
attention_mask=text.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
labels=decoder_targets,
return_dict=True,
)
loss_lm = decoder_output.loss
return BlipOutput(
loss=loss_itc + loss_itm + loss_lm,
loss_itc=loss_itc,
loss_itm=loss_itm,
loss_lm=loss_lm,
sims=BlipSimilarity(
sim_i2t=sim_i2t,
sim_t2i=sim_t2i,
sim_i2t_m=sim_i2t_m,
sim_t2i_m=sim_t2i_m,
sim_i2t_targets=sim_i2t_targets,
sim_t2i_targets=sim_t2i_targets,
),
intermediate_output=BlipIntermediateOutput(
image_embeds=image_embeds,
text_embeds=text_embeds,
image_embeds_m=image_embeds_m,
text_embeds_m=text_embeds_m,
encoder_output=output_pos,
encoder_output_neg=output_neg,
itm_logits=itm_logits,
itm_labels=itm_labels,
decoder_output=decoder_output,
decoder_labels=decoder_targets,
),
)
def reset_queue_ptr(self):
self.queue_ptr = torch.zeros(1, dtype=torch.long)
@classmethod
def from_config(cls, cfg=None):
# set from_pretrained=True to load weights for 'bert-base-uncased'
image_encoder = VisionTransformerEncoder.from_config(cfg, from_pretrained=True)
text_encoder = XBertEncoder.from_config(cfg, from_pretrained=True)
text_decoder = XBertLMHeadDecoder.from_config(cfg, from_pretrained=True)
embed_dim = cfg.get("embed_dim", 256)
momentum = cfg.get("momentum", 0.995)
alpha = cfg.get("alpha", 0.4)
max_txt_len = cfg.get("max_txt_len", 30)
queue_size = cfg.get("queue_size", 57600)
model = cls(
image_encoder=image_encoder,
text_encoder=text_encoder,
text_decoder=text_decoder,
embed_dim=embed_dim,
queue_size=queue_size,
momentum=momentum,
alpha=alpha,
tie_enc_dec_weights=True,
max_txt_len=max_txt_len,
)
# [IMPORTANT] to reset queue pointer to 0.
# Otherwise when updating last batch in the queue, the batch size and remaining queue length may be un-equal.
model.reset_queue_ptr()
return model