Spaces:
Sleeping
Sleeping
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
from torch.cuda.amp import autocast as autocast | |
import torch.nn as nn | |
from lavis.common.registry import registry | |
from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train | |
from lavis.models.blip2_models.modeling_opt import OPTForCausalLM, OPTConfig | |
from transformers import AutoTokenizer | |
class Blip2OPT(Blip2Base): | |
""" | |
BLIP2 OPT model. | |
Supported model types: | |
- pretrained_opt2.7b: pretrained model with OPT2.7b | |
- pretrained_opt6.7b: pretrained model with OPT6.7b | |
- caption_coco_opt2.7b: fintuned image captioning model with OPT2.7b | |
- caption_coco_opt6.7b: fintuned image captioning model with OPT6.7b | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip2_opt", "caption_coco_opt2.7b") | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain_opt2.7b": "configs/models/blip2/blip2_pretrain_opt2.7b.yaml", | |
"pretrain_opt6.7b": "configs/models/blip2/blip2_pretrain_opt6.7b.yaml", | |
"caption_coco_opt2.7b": "configs/models/blip2/blip2_caption_opt2.7b.yaml", | |
"caption_coco_opt6.7b": "configs/models/blip2/blip2_caption_opt6.7b.yaml", | |
} | |
def __init__( | |
self, | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
num_query_token=32, | |
opt_model="facebook/opt-2.7b", | |
prompt="", | |
max_txt_len=32, | |
): | |
super().__init__() | |
self.tokenizer = self.init_tokenizer() | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision | |
) | |
if freeze_vit: | |
for name, param in self.visual_encoder.named_parameters(): | |
param.requires_grad = False | |
self.visual_encoder = self.visual_encoder.eval() | |
self.visual_encoder.train = disabled_train | |
logging.info("freeze vision encoder") | |
self.Qformer, self.query_tokens = self.init_Qformer( | |
num_query_token, self.visual_encoder.num_features | |
) | |
self.Qformer.cls = None | |
self.Qformer.bert.embeddings.word_embeddings = None | |
self.Qformer.bert.embeddings.position_embeddings = None | |
for layer in self.Qformer.bert.encoder.layer: | |
layer.output = None | |
layer.intermediate = None | |
self.opt_tokenizer = AutoTokenizer.from_pretrained(opt_model, use_fast=False) | |
self.opt_model = OPTForCausalLM.from_pretrained( | |
opt_model, torch_dtype=torch.float16 | |
) | |
for name, param in self.opt_model.named_parameters(): | |
param.requires_grad = False | |
self.eos_token_id = self.opt_tokenizer( | |
"\n", add_special_tokens=False | |
).input_ids[0] | |
self.opt_proj = nn.Linear( | |
self.Qformer.config.hidden_size, self.opt_model.config.hidden_size | |
) | |
self.max_txt_len = max_txt_len | |
self.prompt = prompt | |
prompt_tokens = self.opt_tokenizer(self.prompt, return_tensors="pt") | |
self.prompt_length = prompt_tokens.attention_mask.sum(1) | |
def forward(self, samples): | |
image = samples["image"] | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
inputs_opt = self.opt_proj(query_output.last_hidden_state) | |
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to(image.device) | |
self.opt_tokenizer.padding_side = "right" | |
text = [t + "\n" for t in samples["text_input"]] | |
opt_tokens = self.opt_tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
truncation=True, | |
max_length=self.max_txt_len, | |
).to(image.device) | |
targets = opt_tokens.input_ids.masked_fill( | |
opt_tokens.input_ids == self.opt_tokenizer.pad_token_id, -100 | |
) | |
if self.prompt: | |
targets[:, : self.prompt_length] = -100 # do not apply loss to the prompt | |
empty_targets = ( | |
torch.ones(atts_opt.size(), dtype=torch.long).to(image.device).fill_(-100) | |
) | |
targets = torch.cat([empty_targets, targets], dim=1) | |
inputs_embeds = self.opt_model.model.decoder.embed_tokens(opt_tokens.input_ids) | |
inputs_embeds = torch.cat([inputs_opt, inputs_embeds], dim=1) | |
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1) | |
with self.maybe_autocast(): | |
outputs = self.opt_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
return_dict=True, | |
labels=targets, | |
) | |
loss = outputs.loss | |
return {"loss": loss} | |
def generate( | |
self, | |
samples, | |
use_nucleus_sampling=False, | |
num_beams=5, | |
max_length=30, | |
min_length=1, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
length_penalty=1.0, | |
num_captions=1, | |
temperature=1, | |
): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) | |
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling. | |
num_beams (int): Number of beams for beam search. 1 means no beam search. | |
max_length (int): The maximum length of the sequence to be generated. | |
min_length (int): The minimum length of the sequence to be generated. | |
top_p (float): The cumulative probability for nucleus sampling. | |
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. | |
num_captions (int): Number of captions to be generated for each image. | |
Returns: | |
captions (list): A list of strings of length batch_size * num_captions. | |
""" | |
image = samples["image"] | |
with self.maybe_autocast(): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
inputs_opt = self.opt_proj(query_output.last_hidden_state) | |
atts_opt = torch.ones(inputs_opt.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
if "prompt" in samples.keys(): | |
prompt = samples["prompt"] | |
else: | |
prompt = self.prompt | |
prompt = [prompt] * image.size(0) | |
opt_tokens = self.opt_tokenizer(prompt, return_tensors="pt").to( | |
image.device | |
) | |
input_ids = opt_tokens.input_ids | |
attention_mask = torch.cat([atts_opt, opt_tokens.attention_mask], dim=1) | |
if use_nucleus_sampling: | |
query_embeds = inputs_opt.repeat_interleave(num_captions, dim=0) | |
num_beams = 1 | |
else: | |
query_embeds = inputs_opt.repeat_interleave(num_beams, dim=0) | |
outputs = self.opt_model.generate( | |
input_ids=input_ids, | |
query_embeds=query_embeds, | |
attention_mask=attention_mask, | |
do_sample=use_nucleus_sampling, | |
top_p=top_p, | |
temperature=temperature, | |
num_beams=num_beams, | |
max_new_tokens=max_length, | |
min_length=min_length, | |
eos_token_id=self.eos_token_id, | |
repetition_penalty=repetition_penalty, | |
length_penalty=length_penalty, | |
num_return_sequences=num_captions, | |
) | |
prompt_length = opt_tokens.input_ids.shape[1] | |
output_text = self.opt_tokenizer.batch_decode( | |
outputs[:, prompt_length:], skip_special_tokens=True | |
) | |
output_text = [text.strip() for text in output_text] | |
return output_text | |
def from_config(cls, cfg): | |
vit_model = cfg.get("vit_model", "eva_clip_g") | |
img_size = cfg.get("image_size") | |
num_query_token = cfg.get("num_query_token") | |
opt_model = cfg.get("opt_model") | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
freeze_vit = cfg.get("freeze_vit", True) | |
prompt = cfg.get("prompt", "") | |
max_txt_len = cfg.get("max_txt_len", 32) | |
model = cls( | |
vit_model=vit_model, | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
freeze_vit=freeze_vit, | |
num_query_token=num_query_token, | |
opt_model=opt_model, | |
prompt=prompt, | |
max_txt_len=max_txt_len, | |
) | |
model.load_checkpoint_from_config(cfg) | |
return model | |