Spaces:
Build error
Build error
| """ | |
| Copyright (c) 2022, salesforce.com, inc. | |
| All rights reserved. | |
| SPDX-License-Identifier: BSD-3-Clause | |
| For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| """ | |
| from collections import OrderedDict | |
| import json | |
| import os | |
| import torch | |
| from PIL import Image | |
| from lavis.datasets.datasets.vqa_datasets import VQADataset, VQAEvalDataset | |
| class __DisplMixin: | |
| def displ_item(self, index): | |
| sample, ann = self.__getitem__(index), self.annotation[index] | |
| return OrderedDict( | |
| { | |
| "file": ann["image"], | |
| "question": ann["question"], | |
| "question_id": ann["question_id"], | |
| "direct_answers": "; ".join(ann["direct_answers"]), | |
| "choices": "; ".join(ann["choices"]), | |
| "correct_choice": ann["choices"][ann["correct_choice_idx"]], | |
| "image": sample["image"], | |
| } | |
| ) | |
| class AOKVQADataset(VQADataset, __DisplMixin): | |
| def __init__(self, vis_processor, text_processor, vis_root, ann_paths): | |
| super().__init__(vis_processor, text_processor, vis_root, ann_paths) | |
| def __getitem__(self, index): | |
| ann = self.annotation[index] | |
| image_path = os.path.join(self.vis_root, ann["image"]) | |
| image = Image.open(image_path).convert("RGB") | |
| image = self.vis_processor(image) | |
| question = self.text_processor(ann["question"]) | |
| answer_key = "direct_answers" | |
| answer_weight = {} | |
| for answer in ann[answer_key]: | |
| if answer in answer_weight.keys(): | |
| answer_weight[answer] += 1 / len(ann[answer_key]) | |
| else: | |
| answer_weight[answer] = 1 / len(ann[answer_key]) | |
| answers = list(answer_weight.keys()) | |
| weights = list(answer_weight.values()) | |
| return { | |
| "image": image, | |
| "text_input": question, | |
| "answers": answers, | |
| "weights": weights, | |
| } | |
| class AOKVQAEvalDataset(VQAEvalDataset, __DisplMixin): | |
| def __init__(self, vis_processor, text_processor, vis_root, ann_paths): | |
| """ | |
| vis_root (string): Root directory of images (e.g. coco/images/) | |
| ann_root (string): directory to store the annotation file | |
| """ | |
| self.vis_root = vis_root | |
| self.annotation = json.load(open(ann_paths[0])) | |
| answer_list_path = ann_paths[1] | |
| if os.path.exists(answer_list_path): | |
| self.answer_list = json.load(open(answer_list_path)) | |
| else: | |
| self.answer_list = None | |
| try: | |
| self.coco_fmt_qust_file = ann_paths[2] | |
| self.coco_fmt_anno_file = ann_paths[3] | |
| except IndexError: | |
| self.coco_fmt_qust_file = None | |
| self.coco_fmt_anno_file = None | |
| self.vis_processor = vis_processor | |
| self.text_processor = text_processor | |
| self._add_instance_ids() | |
| def collater(self, samples): | |
| ( | |
| image_list, | |
| question_list, | |
| question_id_list, | |
| instance_id_list, | |
| choices_list, | |
| correct_choice_idx_list, | |
| direct_answers_list, | |
| ) = ([], [], [], [], [], [], []) | |
| for sample in samples: | |
| image_list.append(sample["image"]) | |
| question_list.append(sample["text_input"]) | |
| question_id_list.append(sample["question_id"]) | |
| instance_id_list.append(sample["instance_id"]) | |
| choices_list.append(sample["choices"]) | |
| correct_choice_idx_list.append(sample["correct_choice_idx"]) | |
| direct_answers_list.append(sample["direct_answers"]) | |
| return { | |
| "image": torch.stack(image_list, dim=0), | |
| "text_input": question_list, | |
| "question_id": question_id_list, | |
| "instance_id": instance_id_list, | |
| "choices": choices_list, | |
| "correct_choice_idx": correct_choice_idx_list, | |
| "direct_answers": direct_answers_list, | |
| } | |
| def __getitem__(self, index): | |
| ann = self.annotation[index] | |
| image_path = os.path.join(self.vis_root, ann["image"]) | |
| image = Image.open(image_path).convert("RGB") | |
| image = self.vis_processor(image) | |
| question = self.text_processor(ann["question"]) | |
| choices = ann["choices"] | |
| if "correct_choice_idx" in ann: | |
| correct_choice_idx = ann["correct_choice_idx"] | |
| else: | |
| correct_choice_idx = None | |
| if "direct_answers" in ann: | |
| direct_answers = ann["direct_answers"] | |
| else: | |
| direct_answers = None | |
| return { | |
| "image": image, | |
| "text_input": question, | |
| "question_id": ann["question_id"], | |
| "instance_id": ann["instance_id"], | |
| "choices": choices, | |
| "correct_choice_idx": correct_choice_idx, | |
| "direct_answers": direct_answers, | |
| } | |